Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations
In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, tempera...
Uložené v:
| Vydané v: | Computer physics communications Ročník 295; s. 108969 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.02.2024
|
| Predmet: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data. At the same time, advanced intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate for obtaining the optimal predictive models. Finally, the computational accuracy and efficiency of the presented approach are validated via various numerical experiments on realistic random composites.
•A self-optimization wavelet-learning method with high accuracy and efficiency is proposed for heterogeneous materials.•Randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty are considered.•A computer generation algorithm for fibrous composites with high volume ratio inclusions is developed.•High-dimensional and highly nonlinear material features are preprocessed and reduced by wavelet decomposition technique.•Intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate. |
|---|---|
| AbstractList | In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data. At the same time, advanced intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate for obtaining the optimal predictive models. Finally, the computational accuracy and efficiency of the presented approach are validated via various numerical experiments on realistic random composites.
•A self-optimization wavelet-learning method with high accuracy and efficiency is proposed for heterogeneous materials.•Randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty are considered.•A computer generation algorithm for fibrous composites with high volume ratio inclusions is developed.•High-dimensional and highly nonlinear material features are preprocessed and reduced by wavelet decomposition technique.•Intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate. |
| ArticleNumber | 108969 |
| Author | Dong, Hao Nie, Yufeng Gao, Weifeng Linghu, Jiale |
| Author_xml | – sequence: 1 givenname: Jiale surname: Linghu fullname: Linghu, Jiale organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China – sequence: 2 givenname: Hao surname: Dong fullname: Dong, Hao email: donghao@mail.nwpu.edu.cn organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China – sequence: 3 givenname: Weifeng surname: Gao fullname: Gao, Weifeng organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China – sequence: 4 givenname: Yufeng surname: Nie fullname: Nie, Yufeng organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, PR China |
| BookMark | eNp9kM9O4zAQxi3EShR2H2BvfoEU20mTWHtaIf6shMQBOFvuZNxMldiV4xaV1-FFcds9ceA0-mbmN_rmu2TnPnhk7LcUcylkfb2ewwbmSqgy61bX-ozNZNvoQumqOmczIaQoqnqxuGCX07QWQjSNLmfs4xkHV4RNopHebaLg-Zvd4YCpGNBGT37FR0x96LgLkW8idgTp0M0GBvJ5h6ce42gHDsF32zzcUdrz4HhPq37Y8x4TxrBCj2E78dFmRXaY-BulnkfruzAetgijjdATnC45Wm3j0dD0k_1wGcBf_-sVe727fbl5KB6f7v_d_H0sQEmVitouNKCTqpJLKUosdVsKbMulBVEJ4YRutZNdpZRtdFalA7WoQS87C7XrbHnFmtNdiGGaIjoDlI4WUrQ0GCnMIWuzNjlrc8janLLOpPxCbiKNNu6_Zf6cGMwv7fL3ZgJCDzngiJBMF-gb-hPHQaAC |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108916 crossref_primary_10_1038_s41598_025_91196_5 crossref_primary_10_1007_s11831_025_10342_4 crossref_primary_10_1016_j_eswa_2025_127211 |
| Cites_doi | 10.1177/002199839903301803 10.1016/j.cnsns.2022.107000 10.4208/cicp.OA-2021-0110 10.1016/j.advengsoft.2018.03.005 10.1016/j.cma.2020.113591 10.1016/j.finel.2014.05.002 10.1007/BF00363413 10.1063/5.0089072 10.3390/ma14123143 10.1016/j.ijengsci.2017.06.023 10.1016/j.compstruct.2015.02.009 10.1016/j.compstruct.2018.07.128 10.1007/s40430-016-0497-7 10.1016/j.compscitech.2019.107861 10.1016/j.ijheatmasstransfer.2018.08.082 10.1016/0022-5096(65)90010-4 10.1080/01457632.2011.635988 10.1016/j.advengsoft.2018.03.001 10.1299/mel.15-00389 10.1016/j.ijheatmasstransfer.2019.05.031 10.1016/j.jeurceramsoc.2019.02.035 10.1016/j.jmps.2019.03.004 10.1016/j.commatsci.2020.109850 10.1016/j.jmps.2021.104506 10.1016/0022-5096(62)90005-4 10.1186/2196-1166-1-5 10.1016/j.ijsolstr.2014.10.008 10.1016/j.ijmecsci.2004.11.001 10.1080/01495739808956165 10.1016/j.matdes.2021.110341 10.1016/j.ijthermalsci.2017.05.020 10.4208/cicp.OA-2016-0135 10.1016/j.ijsolstr.2019.04.017 10.1016/j.compositesb.2009.02.003 10.1016/j.cam.2012.01.013 10.1016/j.compscitech.2022.109425 10.1016/j.compstruct.2021.114137 10.1016/j.cma.2018.09.020 10.3151/jact.18.272 10.1109/TCYB.2014.2387067 10.1016/0001-6160(73)90064-3 10.1016/j.compositesb.2022.109879 10.1007/s13296-022-00589-z |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2023.108969 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| ExternalDocumentID | 10_1016_j_cpc_2023_108969 S0010465523003144 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c212t-6a59cef1241b103e39830e83bac0400f0989f1d422a79f093fc256c9bdac6fda3 |
| ISSN | 0010-4655 |
| IngestDate | Sat Nov 29 06:45:04 EST 2025 Tue Nov 18 20:49:28 EST 2025 Fri Feb 23 02:35:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wavelet transform Artificial neural network Intelligent optimization algorithm Random heterogeneous materials Nonlinear thermal performances |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c212t-6a59cef1241b103e39830e83bac0400f0989f1d422a79f093fc256c9bdac6fda3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cpc_2023_108969 crossref_primary_10_1016_j_cpc_2023_108969 elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108969 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Yu, Guo, Buehler (br0380) 2021; 154 Lyngdoh, Kelter, Doner, Krishnan, Das (br0390) 2022; 213 Gong, Dong, Qu (br0080) 2018; 119 Dong, Cui, Nie, Yang (br0200) 2017; 21 Dong, Cui, Nie, Yang, Wang (br0460) 2018; 121 Huang, Liew, Liew (br0370) 2021; 267 Reddy, Chin (br0550) 1998; 21 Wei, Zhao, Rong, Bao (br0250) 2018; 127 Miyauchi, Takano, Wen (br0440) 2015; 1 Islam, Pramila (br0060) 1999; 33 Hashin, Shtrikman (br0030) 1962; 10 Dong, Yang, Guan, Cui (br0170) 2022 Rong, Wei, Huang, Bao (br0290) 2019; 184 Gao, Liu, Huang (br0510) 2012; 236 Gao, Huang, Liu, Dai (br0520) 2015; 45 Dong, Cui, Nie, Ma, Jin, Huang (br0480) 2023; 118 Collishaw, Evans (br0540) 1994; 29 To, Bonnet (br0090) 2014; 1 Zhang, Yang, Zhang, Zheng (br0190) 2014; 88 Iwama, Higuchi, Maekawa (br0210) 2020; 18 Ankel, Shribak, Chen, Heifetz (br0300) 2022; 131 Khan, Muliana (br0010) 2009; 40 Wang, Mai (br0530) 2005; 47 Yu, Cui, Han, Chen (br0110) 2008; 2 Liu, Vu-Bac, Zhuang, Fu, Rabczuk (br0420) 2022; 224 Tang, Tang, Liang, Zhang, Li (br0450) 2012; 33 Guo, Meng, Xu, Li, Bao (br0360) 2021; 14 Dong, Linghu, Nie (br0430) 2022 Liu, Wu (br0340) 2019; 127 Linghu, Dong, Cui (br0490) 2022 E.C. for Standardization (br0560) 2004 Zhou, Chen, Liu, Wu (br0230) 2018; 204 Dong, Nie, Cui, Kou, Zou, Han, Guan, Yang (br0260) 2021; 374 Li, Zhang, Zhu, Zhang, Huang, Liang (br0220) 2022; 209 Hill (br0040) 1965; 13 Li, Wang, Wang, Zheng (br0180) 2019; 39 Rao, Liu (br0320) 2020; 184 Mori, Tanaka (br0050) 1973; 21 Ye, Li, Li, Zhao, Feng (br0310) 2019; 115 Dong, Zheng, Cui, Nie, Yang, Yang (br0470) 2019; 169 Wen-Bo, Hao, Min-Qiang, Jun-Yan, Xi-Xi (br0280) 2021; 70 Gou, Zhang, Dai, Li, Tao (br0070) 2015; 125 de Sousa Vieira, Marques (br0100) 2019; 139 Qiu (br0500) 2020 Tao, Liu, Du, Yu (br0350) 2021; 272 Bhaduri, Gupta, Graham-Brady (br0410) 2022; 238 Mathieu-Potvin (br0120) 2017; 120 Guan, Liu, Jia, Yuan, Cui, Mang (br0160) 2015; 56 Zhang, Shang, Tang (br0020) 2022; 171 Nascimento, Cruz, Bravo-Castillero (br0150) 2017; 119 Mattos, Cruz, Bravo-Castillero (br0130) 2018 Dong, Kou, Han, Linghu, Cui (br0270) 2022; 31 Liu, Peng, Yu (br0240) 2021; 179 Liu, Wu, Koishi (br0330) 2019; 345 Avci-Karatas (br0400) 2022; 22 Rodríguez, Cruz, Bravo-Castillero (br0140) 2016; 38 Avci-Karatas (10.1016/j.cpc.2023.108969_br0400) 2022; 22 Gao (10.1016/j.cpc.2023.108969_br0510) 2012; 236 Ye (10.1016/j.cpc.2023.108969_br0310) 2019; 115 Liu (10.1016/j.cpc.2023.108969_br0420) 2022; 224 Dong (10.1016/j.cpc.2023.108969_br0200) 2017; 21 Dong (10.1016/j.cpc.2023.108969_br0470) 2019; 169 Dong (10.1016/j.cpc.2023.108969_br0460) 2018; 121 Nascimento (10.1016/j.cpc.2023.108969_br0150) 2017; 119 Lyngdoh (10.1016/j.cpc.2023.108969_br0390) 2022; 213 Linghu (10.1016/j.cpc.2023.108969_br0490) 2022 To (10.1016/j.cpc.2023.108969_br0090) 2014; 1 Zhang (10.1016/j.cpc.2023.108969_br0020) 2022; 171 Dong (10.1016/j.cpc.2023.108969_br0270) 2022; 31 Liu (10.1016/j.cpc.2023.108969_br0240) 2021; 179 Reddy (10.1016/j.cpc.2023.108969_br0550) 1998; 21 Tang (10.1016/j.cpc.2023.108969_br0450) 2012; 33 Tao (10.1016/j.cpc.2023.108969_br0350) 2021; 272 Wang (10.1016/j.cpc.2023.108969_br0530) 2005; 47 Gong (10.1016/j.cpc.2023.108969_br0080) 2018; 119 Gou (10.1016/j.cpc.2023.108969_br0070) 2015; 125 Bhaduri (10.1016/j.cpc.2023.108969_br0410) 2022; 238 Ankel (10.1016/j.cpc.2023.108969_br0300) 2022; 131 Rong (10.1016/j.cpc.2023.108969_br0290) 2019; 184 Gao (10.1016/j.cpc.2023.108969_br0520) 2015; 45 Hill (10.1016/j.cpc.2023.108969_br0040) 1965; 13 de Sousa Vieira (10.1016/j.cpc.2023.108969_br0100) 2019; 139 Li (10.1016/j.cpc.2023.108969_br0220) 2022; 209 Dong (10.1016/j.cpc.2023.108969_br0170) 2022 Zhang (10.1016/j.cpc.2023.108969_br0190) 2014; 88 Islam (10.1016/j.cpc.2023.108969_br0060) 1999; 33 Hashin (10.1016/j.cpc.2023.108969_br0030) 1962; 10 E.C. for Standardization (10.1016/j.cpc.2023.108969_br0560) 2004 Huang (10.1016/j.cpc.2023.108969_br0370) 2021; 267 Guo (10.1016/j.cpc.2023.108969_br0360) 2021; 14 Rodríguez (10.1016/j.cpc.2023.108969_br0140) 2016; 38 Dong (10.1016/j.cpc.2023.108969_br0480) 2023; 118 Rao (10.1016/j.cpc.2023.108969_br0320) 2020; 184 Liu (10.1016/j.cpc.2023.108969_br0330) 2019; 345 Yang (10.1016/j.cpc.2023.108969_br0380) 2021; 154 Zhou (10.1016/j.cpc.2023.108969_br0230) 2018; 204 Yu (10.1016/j.cpc.2023.108969_br0110) 2008; 2 Miyauchi (10.1016/j.cpc.2023.108969_br0440) 2015; 1 Li (10.1016/j.cpc.2023.108969_br0180) 2019; 39 Khan (10.1016/j.cpc.2023.108969_br0010) 2009; 40 Iwama (10.1016/j.cpc.2023.108969_br0210) 2020; 18 Dong (10.1016/j.cpc.2023.108969_br0260) 2021; 374 Mori (10.1016/j.cpc.2023.108969_br0050) 1973; 21 Mattos (10.1016/j.cpc.2023.108969_br0130) 2018 Guan (10.1016/j.cpc.2023.108969_br0160) 2015; 56 Qiu (10.1016/j.cpc.2023.108969_br0500) 2020 Collishaw (10.1016/j.cpc.2023.108969_br0540) 1994; 29 Dong (10.1016/j.cpc.2023.108969_br0430) 2022 Liu (10.1016/j.cpc.2023.108969_br0340) 2019; 127 Mathieu-Potvin (10.1016/j.cpc.2023.108969_br0120) 2017; 120 Wei (10.1016/j.cpc.2023.108969_br0250) 2018; 127 Wen-Bo (10.1016/j.cpc.2023.108969_br0280) 2021; 70 |
| References_xml | – volume: 18 start-page: 272 year: 2020 end-page: 293 ident: br0210 publication-title: J. Adv. Concr. Technol. – volume: 33 start-page: 1699 year: 1999 end-page: 1715 ident: br0060 publication-title: J. Compos. Mater. – volume: 374 year: 2021 ident: br0260 publication-title: Comput. Methods Appl. Mech. Eng. – volume: 131 year: 2022 ident: br0300 publication-title: J. Appl. Phys. – volume: 21 start-page: 571 year: 1973 end-page: 574 ident: br0050 publication-title: Acta Metall. – volume: 70 year: 2021 ident: br0280 publication-title: Acta Phys. Sin. – volume: 139 start-page: 412 year: 2019 end-page: 424 ident: br0100 publication-title: Int. J. Heat Mass Transf. – volume: 127 start-page: 20 year: 2019 end-page: 46 ident: br0340 publication-title: J. Mech. Phys. Solids – volume: 267 year: 2021 ident: br0370 publication-title: Compos. Struct. – volume: 115 year: 2019 ident: br0310 publication-title: Appl. Phys. Lett. – year: 2004 ident: br0560 article-title: Eurocode 2: design of concrete structures-part 1.2 general rules-structural fire design – volume: 45 start-page: 2827 year: 2015 end-page: 2839 ident: br0520 publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 303 year: 2005 end-page: 317 ident: br0530 publication-title: Int. J. Mech. Sci. – volume: 21 start-page: 1173 year: 2017 end-page: 1206 ident: br0200 publication-title: Commun. Comput. Phys. – volume: 213 year: 2022 ident: br0390 publication-title: Mater. Des. – volume: 119 start-page: 205 year: 2017 end-page: 216 ident: br0150 publication-title: Int. J. Eng. Sci. – volume: 169 start-page: 95 year: 2019 end-page: 121 ident: br0470 publication-title: Int. J. Solids Struct. – volume: 38 start-page: 1333 year: 2016 end-page: 1343 ident: br0140 publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 40 start-page: 511 year: 2009 end-page: 521 ident: br0010 publication-title: Composites, Part B, Eng. – volume: 171 year: 2022 ident: br0020 publication-title: Int. J. Therm. Sci. – volume: 345 start-page: 1138 year: 2019 end-page: 1168 ident: br0330 publication-title: Comput. Methods Appl. Mech. Eng. – volume: 1 start-page: 15 year: 2015 end-page: 00389 ident: br0440 publication-title: Mech. Eng. Lett. – volume: 154 year: 2021 ident: br0380 publication-title: J. Mech. Phys. Solids – volume: 121 start-page: 1 year: 2018 end-page: 12 ident: br0460 publication-title: Adv. Eng. Softw. – year: 2018 ident: br0130 publication-title: Eng. Comput. – volume: 88 start-page: 97 year: 2014 end-page: 117 ident: br0190 publication-title: Finite Elem. Anal. Des. – volume: 238 year: 2022 ident: br0410 publication-title: Composites, Part B, Eng. – year: 2022 ident: br0170 publication-title: J. Comput. Phys. – volume: 22 start-page: 539 year: 2022 end-page: 556 ident: br0400 publication-title: Int. J. Steel Struct. – volume: 29 start-page: 2261 year: 1994 end-page: 2273 ident: br0540 publication-title: J. Mater. Sci. – volume: 33 start-page: 732 year: 2012 end-page: 747 ident: br0450 publication-title: Heat Transf. Eng. – year: 2022 ident: br0430 publication-title: Compos. Struct. – start-page: 1 year: 2022 end-page: 31 ident: br0490 publication-title: Comput. Mech. – volume: 10 start-page: 343 year: 1962 end-page: 352 ident: br0030 publication-title: J. Mech. Phys. Solids – volume: 14 start-page: 3143 year: 2021 ident: br0360 publication-title: Materials – volume: 31 start-page: 593 year: 2022 end-page: 625 ident: br0270 publication-title: Commun. Comput. Phys. – volume: 13 start-page: 213 year: 1965 end-page: 222 ident: br0040 publication-title: J. Mech. Phys. Solids – volume: 125 start-page: 499 year: 2015 end-page: 508 ident: br0070 publication-title: Compos. Struct. – volume: 1 start-page: 1 year: 2014 end-page: 12 ident: br0090 publication-title: Asia Pac. J. Comput. Eng. – year: 2020 ident: br0500 article-title: Neural Networks and Deep Learning – volume: 272 year: 2021 ident: br0350 publication-title: Compos. Struct. – volume: 209 year: 2022 ident: br0220 publication-title: Appl. Therm. Eng. – volume: 21 start-page: 593 year: 1998 end-page: 626 ident: br0550 publication-title: J. Therm. Stresses – volume: 39 start-page: 2720 year: 2019 end-page: 2730 ident: br0180 publication-title: J. Eur. Ceram. Soc. – volume: 224 year: 2022 ident: br0420 publication-title: Compos. Sci. Technol. – volume: 119 start-page: 103 year: 2018 end-page: 115 ident: br0080 publication-title: Adv. Eng. Softw. – volume: 56 start-page: 280 year: 2015 end-page: 289 ident: br0160 publication-title: Int. J. Solids Struct. – volume: 2 start-page: 19 year: 2008 end-page: 34 ident: br0110 publication-title: Comput. Exp. Simul. Eng. Sci. – volume: 127 start-page: 908 year: 2018 end-page: 916 ident: br0250 publication-title: Int. J. Heat Mass Transf. – volume: 184 year: 2020 ident: br0320 publication-title: Comput. Mater. Sci. – volume: 204 start-page: 536 year: 2018 end-page: 547 ident: br0230 publication-title: Compos. Struct. – volume: 179 year: 2021 ident: br0240 publication-title: Int. J. Heat Mass Transf. – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: br0510 publication-title: J. Comput. Appl. Math. – volume: 118 year: 2023 ident: br0480 publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 184 year: 2019 ident: br0290 publication-title: Compos. Sci. Technol. – volume: 120 start-page: 400 year: 2017 end-page: 426 ident: br0120 publication-title: Int. J. Therm. Sci. – volume: 33 start-page: 1699 year: 1999 ident: 10.1016/j.cpc.2023.108969_br0060 publication-title: J. Compos. Mater. doi: 10.1177/002199839903301803 – volume: 118 year: 2023 ident: 10.1016/j.cpc.2023.108969_br0480 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2022.107000 – volume: 31 start-page: 593 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0270 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2021-0110 – volume: 121 start-page: 1 year: 2018 ident: 10.1016/j.cpc.2023.108969_br0460 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.03.005 – volume: 374 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0260 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113591 – volume: 88 start-page: 97 year: 2014 ident: 10.1016/j.cpc.2023.108969_br0190 publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2014.05.002 – volume: 29 start-page: 2261 year: 1994 ident: 10.1016/j.cpc.2023.108969_br0540 publication-title: J. Mater. Sci. doi: 10.1007/BF00363413 – volume: 131 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0300 publication-title: J. Appl. Phys. doi: 10.1063/5.0089072 – volume: 14 start-page: 3143 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0360 publication-title: Materials doi: 10.3390/ma14123143 – volume: 119 start-page: 205 year: 2017 ident: 10.1016/j.cpc.2023.108969_br0150 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2017.06.023 – volume: 125 start-page: 499 year: 2015 ident: 10.1016/j.cpc.2023.108969_br0070 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.02.009 – volume: 204 start-page: 536 year: 2018 ident: 10.1016/j.cpc.2023.108969_br0230 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.07.128 – volume: 179 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0240 publication-title: Int. J. Heat Mass Transf. – volume: 38 start-page: 1333 year: 2016 ident: 10.1016/j.cpc.2023.108969_br0140 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-016-0497-7 – volume: 184 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0290 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107861 – volume: 127 start-page: 908 year: 2018 ident: 10.1016/j.cpc.2023.108969_br0250 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.08.082 – volume: 13 start-page: 213 year: 1965 ident: 10.1016/j.cpc.2023.108969_br0040 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(65)90010-4 – volume: 267 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0370 publication-title: Compos. Struct. – volume: 2 start-page: 19 year: 2008 ident: 10.1016/j.cpc.2023.108969_br0110 publication-title: Comput. Exp. Simul. Eng. Sci. – volume: 33 start-page: 732 year: 2012 ident: 10.1016/j.cpc.2023.108969_br0450 publication-title: Heat Transf. Eng. doi: 10.1080/01457632.2011.635988 – year: 2004 ident: 10.1016/j.cpc.2023.108969_br0560 – volume: 119 start-page: 103 year: 2018 ident: 10.1016/j.cpc.2023.108969_br0080 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.03.001 – volume: 1 start-page: 15 year: 2015 ident: 10.1016/j.cpc.2023.108969_br0440 publication-title: Mech. Eng. Lett. doi: 10.1299/mel.15-00389 – volume: 139 start-page: 412 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0100 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.031 – volume: 39 start-page: 2720 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0180 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.02.035 – volume: 127 start-page: 20 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0340 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.03.004 – volume: 184 year: 2020 ident: 10.1016/j.cpc.2023.108969_br0320 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109850 – volume: 70 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0280 publication-title: Acta Phys. Sin. – volume: 154 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0380 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104506 – volume: 10 start-page: 343 year: 1962 ident: 10.1016/j.cpc.2023.108969_br0030 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(62)90005-4 – volume: 115 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0310 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.cpc.2023.108969_br0090 publication-title: Asia Pac. J. Comput. Eng. doi: 10.1186/2196-1166-1-5 – volume: 56 start-page: 280 year: 2015 ident: 10.1016/j.cpc.2023.108969_br0160 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.10.008 – year: 2022 ident: 10.1016/j.cpc.2023.108969_br0430 publication-title: Compos. Struct. – volume: 47 start-page: 303 year: 2005 ident: 10.1016/j.cpc.2023.108969_br0530 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2004.11.001 – volume: 209 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0220 publication-title: Appl. Therm. Eng. – volume: 21 start-page: 593 year: 1998 ident: 10.1016/j.cpc.2023.108969_br0550 publication-title: J. Therm. Stresses doi: 10.1080/01495739808956165 – year: 2018 ident: 10.1016/j.cpc.2023.108969_br0130 publication-title: Eng. Comput. – volume: 213 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0390 publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110341 – volume: 120 start-page: 400 year: 2017 ident: 10.1016/j.cpc.2023.108969_br0120 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.05.020 – volume: 21 start-page: 1173 year: 2017 ident: 10.1016/j.cpc.2023.108969_br0200 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0135 – volume: 169 start-page: 95 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0470 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.04.017 – volume: 40 start-page: 511 year: 2009 ident: 10.1016/j.cpc.2023.108969_br0010 publication-title: Composites, Part B, Eng. doi: 10.1016/j.compositesb.2009.02.003 – year: 2020 ident: 10.1016/j.cpc.2023.108969_br0500 – volume: 236 start-page: 2741 year: 2012 ident: 10.1016/j.cpc.2023.108969_br0510 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – volume: 171 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0020 publication-title: Int. J. Therm. Sci. – volume: 224 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0420 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109425 – volume: 272 year: 2021 ident: 10.1016/j.cpc.2023.108969_br0350 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114137 – volume: 345 start-page: 1138 year: 2019 ident: 10.1016/j.cpc.2023.108969_br0330 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.020 – volume: 18 start-page: 272 year: 2020 ident: 10.1016/j.cpc.2023.108969_br0210 publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.18.272 – volume: 45 start-page: 2827 year: 2015 ident: 10.1016/j.cpc.2023.108969_br0520 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2387067 – volume: 21 start-page: 571 year: 1973 ident: 10.1016/j.cpc.2023.108969_br0050 publication-title: Acta Metall. doi: 10.1016/0001-6160(73)90064-3 – volume: 238 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0410 publication-title: Composites, Part B, Eng. doi: 10.1016/j.compositesb.2022.109879 – volume: 22 start-page: 539 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0400 publication-title: Int. J. Steel Struct. doi: 10.1007/s13296-022-00589-z – year: 2022 ident: 10.1016/j.cpc.2023.108969_br0170 publication-title: J. Comput. Phys. – start-page: 1 year: 2022 ident: 10.1016/j.cpc.2023.108969_br0490 publication-title: Comput. Mech. |
| SSID | ssj0007793 |
| Score | 2.4489357 |
| Snippet | In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108969 |
| SubjectTerms | Artificial neural network Intelligent optimization algorithm Nonlinear thermal performances Random heterogeneous materials Wavelet transform |
| Title | Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations |
| URI | https://dx.doi.org/10.1016/j.cpc.2023.108969 |
| Volume | 295 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiQuiKcoL_nACZQqiZNNfKygqCBUVaKI5RQ5jl22SpPVdreP38Pv4L8xYztOdksRPXCJdi3HcXa-nfk8Hs8Q8jqRTLNEVUHKEh0kmRjj_q4IWAn0mYWhKKU5KPw529_PJxN-MBr96s7CnNVZ0-QXF3z2X0UNbSBsPDp7A3H7QaEBPoPQ4Qpih-s_Cf6LqnXQgiY4cUcs354LrC6xCOrODWLLRpsIw9kcd2pM7HNjs2YIE3YI-hoThzSYDtbWl0BWCSv5-hLIJQijhQkojJ8Fymtfy_p0wfZV7Qn2muLZZlNqxYykp0fL-cA_2KVHcGUlnI_lFIPc-yMrnvHDmvnox9JgDp7l0fjeRRTvidZHEgnj_f2mplo5s2z2XYzn9vvSNzpXR5x00dG9-gajgQnfhuo75ulAAUdhzm3tlyu2wbopjrflDFNXxmy777uah3vNPvqoxS4g7riAIQocorBD3CKbcZZyUKqbOx93J588Fcgyl_XZzbvbVjcBhmvz-DMxGpCdw_vknlul0B2LrgdkpJqH5M6BldAj8vMKxug6xqjFGAWM0R5j1GOMOozRIcZoq6nFGF3BGPUYo4gx2mGMDjFGVzH2mHz9sHv4bi9w1T4CCfRpEYxFyqXSwDejMgqZYjxnocpZKSQaGh3ynOuoSuJYZBy-MS2BrkteVkKOdSXYE7IBL6GeElqpKgfVxPMI9JCscBEk0wpsu8aq1nK8RcLupy6kS4WPFVnq4loRb5E3_paZzQPzt85JJ7_CEVlLUAvA4vW3PbvJM56Tu_1f5AXZWMyX6iW5Lc8W09P5KwfE3xwOysw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-optimization+wavelet-learning+method+for+predicting+nonlinear+thermal+conductivity+of+highly+heterogeneous+materials+with+randomly+hierarchical+configurations&rft.jtitle=Computer+physics+communications&rft.au=Linghu%2C+Jiale&rft.au=Dong%2C+Hao&rft.au=Gao%2C+Weifeng&rft.au=Nie%2C+Yufeng&rft.date=2024-02-01&rft.issn=0010-4655&rft.volume=295&rft.spage=108969&rft_id=info:doi/10.1016%2Fj.cpc.2023.108969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108969 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |