Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations

In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, tempera...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer physics communications Ročník 295; s. 108969
Hlavní autori: Linghu, Jiale, Dong, Hao, Gao, Weifeng, Nie, Yufeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2024
Predmet:
ISSN:0010-4655, 1879-2944
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data. At the same time, advanced intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate for obtaining the optimal predictive models. Finally, the computational accuracy and efficiency of the presented approach are validated via various numerical experiments on realistic random composites. •A self-optimization wavelet-learning method with high accuracy and efficiency is proposed for heterogeneous materials.•Randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty are considered.•A computer generation algorithm for fibrous composites with high volume ratio inclusions is developed.•High-dimensional and highly nonlinear material features are preprocessed and reduced by wavelet decomposition technique.•Intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate.
AbstractList In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data. At the same time, advanced intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate for obtaining the optimal predictive models. Finally, the computational accuracy and efficiency of the presented approach are validated via various numerical experiments on realistic random composites. •A self-optimization wavelet-learning method with high accuracy and efficiency is proposed for heterogeneous materials.•Randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty are considered.•A computer generation algorithm for fibrous composites with high volume ratio inclusions is developed.•High-dimensional and highly nonlinear material features are preprocessed and reduced by wavelet decomposition technique.•Intelligent optimization algorithms are utilized to self-search the optimal network structure and learning rate.
ArticleNumber 108969
Author Dong, Hao
Nie, Yufeng
Gao, Weifeng
Linghu, Jiale
Author_xml – sequence: 1
  givenname: Jiale
  surname: Linghu
  fullname: Linghu, Jiale
  organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
– sequence: 2
  givenname: Hao
  surname: Dong
  fullname: Dong, Hao
  email: donghao@mail.nwpu.edu.cn
  organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
– sequence: 3
  givenname: Weifeng
  surname: Gao
  fullname: Gao, Weifeng
  organization: School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
– sequence: 4
  givenname: Yufeng
  surname: Nie
  fullname: Nie, Yufeng
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, PR China
BookMark eNp9kM9O4zAQxi3EShR2H2BvfoEU20mTWHtaIf6shMQBOFvuZNxMldiV4xaV1-FFcds9ceA0-mbmN_rmu2TnPnhk7LcUcylkfb2ewwbmSqgy61bX-ozNZNvoQumqOmczIaQoqnqxuGCX07QWQjSNLmfs4xkHV4RNopHebaLg-Zvd4YCpGNBGT37FR0x96LgLkW8idgTp0M0GBvJ5h6ce42gHDsF32zzcUdrz4HhPq37Y8x4TxrBCj2E78dFmRXaY-BulnkfruzAetgijjdATnC45Wm3j0dD0k_1wGcBf_-sVe727fbl5KB6f7v_d_H0sQEmVitouNKCTqpJLKUosdVsKbMulBVEJ4YRutZNdpZRtdFalA7WoQS87C7XrbHnFmtNdiGGaIjoDlI4WUrQ0GCnMIWuzNjlrc8janLLOpPxCbiKNNu6_Zf6cGMwv7fL3ZgJCDzngiJBMF-gb-hPHQaAC
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108916
crossref_primary_10_1038_s41598_025_91196_5
crossref_primary_10_1007_s11831_025_10342_4
crossref_primary_10_1016_j_eswa_2025_127211
Cites_doi 10.1177/002199839903301803
10.1016/j.cnsns.2022.107000
10.4208/cicp.OA-2021-0110
10.1016/j.advengsoft.2018.03.005
10.1016/j.cma.2020.113591
10.1016/j.finel.2014.05.002
10.1007/BF00363413
10.1063/5.0089072
10.3390/ma14123143
10.1016/j.ijengsci.2017.06.023
10.1016/j.compstruct.2015.02.009
10.1016/j.compstruct.2018.07.128
10.1007/s40430-016-0497-7
10.1016/j.compscitech.2019.107861
10.1016/j.ijheatmasstransfer.2018.08.082
10.1016/0022-5096(65)90010-4
10.1080/01457632.2011.635988
10.1016/j.advengsoft.2018.03.001
10.1299/mel.15-00389
10.1016/j.ijheatmasstransfer.2019.05.031
10.1016/j.jeurceramsoc.2019.02.035
10.1016/j.jmps.2019.03.004
10.1016/j.commatsci.2020.109850
10.1016/j.jmps.2021.104506
10.1016/0022-5096(62)90005-4
10.1186/2196-1166-1-5
10.1016/j.ijsolstr.2014.10.008
10.1016/j.ijmecsci.2004.11.001
10.1080/01495739808956165
10.1016/j.matdes.2021.110341
10.1016/j.ijthermalsci.2017.05.020
10.4208/cicp.OA-2016-0135
10.1016/j.ijsolstr.2019.04.017
10.1016/j.compositesb.2009.02.003
10.1016/j.cam.2012.01.013
10.1016/j.compscitech.2022.109425
10.1016/j.compstruct.2021.114137
10.1016/j.cma.2018.09.020
10.3151/jact.18.272
10.1109/TCYB.2014.2387067
10.1016/0001-6160(73)90064-3
10.1016/j.compositesb.2022.109879
10.1007/s13296-022-00589-z
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2023.108969
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2023_108969
S0010465523003144
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c212t-6a59cef1241b103e39830e83bac0400f0989f1d422a79f093fc256c9bdac6fda3
ISSN 0010-4655
IngestDate Sat Nov 29 06:45:04 EST 2025
Tue Nov 18 20:49:28 EST 2025
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wavelet transform
Artificial neural network
Intelligent optimization algorithm
Random heterogeneous materials
Nonlinear thermal performances
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-6a59cef1241b103e39830e83bac0400f0989f1d422a79f093fc256c9bdac6fda3
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2023_108969
crossref_primary_10_1016_j_cpc_2023_108969
elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108969
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Yu, Guo, Buehler (br0380) 2021; 154
Lyngdoh, Kelter, Doner, Krishnan, Das (br0390) 2022; 213
Gong, Dong, Qu (br0080) 2018; 119
Dong, Cui, Nie, Yang (br0200) 2017; 21
Dong, Cui, Nie, Yang, Wang (br0460) 2018; 121
Huang, Liew, Liew (br0370) 2021; 267
Reddy, Chin (br0550) 1998; 21
Wei, Zhao, Rong, Bao (br0250) 2018; 127
Miyauchi, Takano, Wen (br0440) 2015; 1
Islam, Pramila (br0060) 1999; 33
Hashin, Shtrikman (br0030) 1962; 10
Dong, Yang, Guan, Cui (br0170) 2022
Rong, Wei, Huang, Bao (br0290) 2019; 184
Gao, Liu, Huang (br0510) 2012; 236
Gao, Huang, Liu, Dai (br0520) 2015; 45
Dong, Cui, Nie, Ma, Jin, Huang (br0480) 2023; 118
Collishaw, Evans (br0540) 1994; 29
To, Bonnet (br0090) 2014; 1
Zhang, Yang, Zhang, Zheng (br0190) 2014; 88
Iwama, Higuchi, Maekawa (br0210) 2020; 18
Ankel, Shribak, Chen, Heifetz (br0300) 2022; 131
Khan, Muliana (br0010) 2009; 40
Wang, Mai (br0530) 2005; 47
Yu, Cui, Han, Chen (br0110) 2008; 2
Liu, Vu-Bac, Zhuang, Fu, Rabczuk (br0420) 2022; 224
Tang, Tang, Liang, Zhang, Li (br0450) 2012; 33
Guo, Meng, Xu, Li, Bao (br0360) 2021; 14
Dong, Linghu, Nie (br0430) 2022
Liu, Wu (br0340) 2019; 127
Linghu, Dong, Cui (br0490) 2022
E.C. for Standardization (br0560) 2004
Zhou, Chen, Liu, Wu (br0230) 2018; 204
Dong, Nie, Cui, Kou, Zou, Han, Guan, Yang (br0260) 2021; 374
Li, Zhang, Zhu, Zhang, Huang, Liang (br0220) 2022; 209
Hill (br0040) 1965; 13
Li, Wang, Wang, Zheng (br0180) 2019; 39
Rao, Liu (br0320) 2020; 184
Mori, Tanaka (br0050) 1973; 21
Ye, Li, Li, Zhao, Feng (br0310) 2019; 115
Dong, Zheng, Cui, Nie, Yang, Yang (br0470) 2019; 169
Wen-Bo, Hao, Min-Qiang, Jun-Yan, Xi-Xi (br0280) 2021; 70
Gou, Zhang, Dai, Li, Tao (br0070) 2015; 125
de Sousa Vieira, Marques (br0100) 2019; 139
Qiu (br0500) 2020
Tao, Liu, Du, Yu (br0350) 2021; 272
Bhaduri, Gupta, Graham-Brady (br0410) 2022; 238
Mathieu-Potvin (br0120) 2017; 120
Guan, Liu, Jia, Yuan, Cui, Mang (br0160) 2015; 56
Zhang, Shang, Tang (br0020) 2022; 171
Nascimento, Cruz, Bravo-Castillero (br0150) 2017; 119
Mattos, Cruz, Bravo-Castillero (br0130) 2018
Dong, Kou, Han, Linghu, Cui (br0270) 2022; 31
Liu, Peng, Yu (br0240) 2021; 179
Liu, Wu, Koishi (br0330) 2019; 345
Avci-Karatas (br0400) 2022; 22
Rodríguez, Cruz, Bravo-Castillero (br0140) 2016; 38
Avci-Karatas (10.1016/j.cpc.2023.108969_br0400) 2022; 22
Gao (10.1016/j.cpc.2023.108969_br0510) 2012; 236
Ye (10.1016/j.cpc.2023.108969_br0310) 2019; 115
Liu (10.1016/j.cpc.2023.108969_br0420) 2022; 224
Dong (10.1016/j.cpc.2023.108969_br0200) 2017; 21
Dong (10.1016/j.cpc.2023.108969_br0470) 2019; 169
Dong (10.1016/j.cpc.2023.108969_br0460) 2018; 121
Nascimento (10.1016/j.cpc.2023.108969_br0150) 2017; 119
Lyngdoh (10.1016/j.cpc.2023.108969_br0390) 2022; 213
Linghu (10.1016/j.cpc.2023.108969_br0490) 2022
To (10.1016/j.cpc.2023.108969_br0090) 2014; 1
Zhang (10.1016/j.cpc.2023.108969_br0020) 2022; 171
Dong (10.1016/j.cpc.2023.108969_br0270) 2022; 31
Liu (10.1016/j.cpc.2023.108969_br0240) 2021; 179
Reddy (10.1016/j.cpc.2023.108969_br0550) 1998; 21
Tang (10.1016/j.cpc.2023.108969_br0450) 2012; 33
Tao (10.1016/j.cpc.2023.108969_br0350) 2021; 272
Wang (10.1016/j.cpc.2023.108969_br0530) 2005; 47
Gong (10.1016/j.cpc.2023.108969_br0080) 2018; 119
Gou (10.1016/j.cpc.2023.108969_br0070) 2015; 125
Bhaduri (10.1016/j.cpc.2023.108969_br0410) 2022; 238
Ankel (10.1016/j.cpc.2023.108969_br0300) 2022; 131
Rong (10.1016/j.cpc.2023.108969_br0290) 2019; 184
Gao (10.1016/j.cpc.2023.108969_br0520) 2015; 45
Hill (10.1016/j.cpc.2023.108969_br0040) 1965; 13
de Sousa Vieira (10.1016/j.cpc.2023.108969_br0100) 2019; 139
Li (10.1016/j.cpc.2023.108969_br0220) 2022; 209
Dong (10.1016/j.cpc.2023.108969_br0170) 2022
Zhang (10.1016/j.cpc.2023.108969_br0190) 2014; 88
Islam (10.1016/j.cpc.2023.108969_br0060) 1999; 33
Hashin (10.1016/j.cpc.2023.108969_br0030) 1962; 10
E.C. for Standardization (10.1016/j.cpc.2023.108969_br0560) 2004
Huang (10.1016/j.cpc.2023.108969_br0370) 2021; 267
Guo (10.1016/j.cpc.2023.108969_br0360) 2021; 14
Rodríguez (10.1016/j.cpc.2023.108969_br0140) 2016; 38
Dong (10.1016/j.cpc.2023.108969_br0480) 2023; 118
Rao (10.1016/j.cpc.2023.108969_br0320) 2020; 184
Liu (10.1016/j.cpc.2023.108969_br0330) 2019; 345
Yang (10.1016/j.cpc.2023.108969_br0380) 2021; 154
Zhou (10.1016/j.cpc.2023.108969_br0230) 2018; 204
Yu (10.1016/j.cpc.2023.108969_br0110) 2008; 2
Miyauchi (10.1016/j.cpc.2023.108969_br0440) 2015; 1
Li (10.1016/j.cpc.2023.108969_br0180) 2019; 39
Khan (10.1016/j.cpc.2023.108969_br0010) 2009; 40
Iwama (10.1016/j.cpc.2023.108969_br0210) 2020; 18
Dong (10.1016/j.cpc.2023.108969_br0260) 2021; 374
Mori (10.1016/j.cpc.2023.108969_br0050) 1973; 21
Mattos (10.1016/j.cpc.2023.108969_br0130) 2018
Guan (10.1016/j.cpc.2023.108969_br0160) 2015; 56
Qiu (10.1016/j.cpc.2023.108969_br0500) 2020
Collishaw (10.1016/j.cpc.2023.108969_br0540) 1994; 29
Dong (10.1016/j.cpc.2023.108969_br0430) 2022
Liu (10.1016/j.cpc.2023.108969_br0340) 2019; 127
Mathieu-Potvin (10.1016/j.cpc.2023.108969_br0120) 2017; 120
Wei (10.1016/j.cpc.2023.108969_br0250) 2018; 127
Wen-Bo (10.1016/j.cpc.2023.108969_br0280) 2021; 70
References_xml – volume: 18
  start-page: 272
  year: 2020
  end-page: 293
  ident: br0210
  publication-title: J. Adv. Concr. Technol.
– volume: 33
  start-page: 1699
  year: 1999
  end-page: 1715
  ident: br0060
  publication-title: J. Compos. Mater.
– volume: 374
  year: 2021
  ident: br0260
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 131
  year: 2022
  ident: br0300
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 571
  year: 1973
  end-page: 574
  ident: br0050
  publication-title: Acta Metall.
– volume: 70
  year: 2021
  ident: br0280
  publication-title: Acta Phys. Sin.
– volume: 139
  start-page: 412
  year: 2019
  end-page: 424
  ident: br0100
  publication-title: Int. J. Heat Mass Transf.
– volume: 127
  start-page: 20
  year: 2019
  end-page: 46
  ident: br0340
  publication-title: J. Mech. Phys. Solids
– volume: 267
  year: 2021
  ident: br0370
  publication-title: Compos. Struct.
– volume: 115
  year: 2019
  ident: br0310
  publication-title: Appl. Phys. Lett.
– year: 2004
  ident: br0560
  article-title: Eurocode 2: design of concrete structures-part 1.2 general rules-structural fire design
– volume: 45
  start-page: 2827
  year: 2015
  end-page: 2839
  ident: br0520
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 303
  year: 2005
  end-page: 317
  ident: br0530
  publication-title: Int. J. Mech. Sci.
– volume: 21
  start-page: 1173
  year: 2017
  end-page: 1206
  ident: br0200
  publication-title: Commun. Comput. Phys.
– volume: 213
  year: 2022
  ident: br0390
  publication-title: Mater. Des.
– volume: 119
  start-page: 205
  year: 2017
  end-page: 216
  ident: br0150
  publication-title: Int. J. Eng. Sci.
– volume: 169
  start-page: 95
  year: 2019
  end-page: 121
  ident: br0470
  publication-title: Int. J. Solids Struct.
– volume: 38
  start-page: 1333
  year: 2016
  end-page: 1343
  ident: br0140
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 40
  start-page: 511
  year: 2009
  end-page: 521
  ident: br0010
  publication-title: Composites, Part B, Eng.
– volume: 171
  year: 2022
  ident: br0020
  publication-title: Int. J. Therm. Sci.
– volume: 345
  start-page: 1138
  year: 2019
  end-page: 1168
  ident: br0330
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 1
  start-page: 15
  year: 2015
  end-page: 00389
  ident: br0440
  publication-title: Mech. Eng. Lett.
– volume: 154
  year: 2021
  ident: br0380
  publication-title: J. Mech. Phys. Solids
– volume: 121
  start-page: 1
  year: 2018
  end-page: 12
  ident: br0460
  publication-title: Adv. Eng. Softw.
– year: 2018
  ident: br0130
  publication-title: Eng. Comput.
– volume: 88
  start-page: 97
  year: 2014
  end-page: 117
  ident: br0190
  publication-title: Finite Elem. Anal. Des.
– volume: 238
  year: 2022
  ident: br0410
  publication-title: Composites, Part B, Eng.
– year: 2022
  ident: br0170
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 539
  year: 2022
  end-page: 556
  ident: br0400
  publication-title: Int. J. Steel Struct.
– volume: 29
  start-page: 2261
  year: 1994
  end-page: 2273
  ident: br0540
  publication-title: J. Mater. Sci.
– volume: 33
  start-page: 732
  year: 2012
  end-page: 747
  ident: br0450
  publication-title: Heat Transf. Eng.
– year: 2022
  ident: br0430
  publication-title: Compos. Struct.
– start-page: 1
  year: 2022
  end-page: 31
  ident: br0490
  publication-title: Comput. Mech.
– volume: 10
  start-page: 343
  year: 1962
  end-page: 352
  ident: br0030
  publication-title: J. Mech. Phys. Solids
– volume: 14
  start-page: 3143
  year: 2021
  ident: br0360
  publication-title: Materials
– volume: 31
  start-page: 593
  year: 2022
  end-page: 625
  ident: br0270
  publication-title: Commun. Comput. Phys.
– volume: 13
  start-page: 213
  year: 1965
  end-page: 222
  ident: br0040
  publication-title: J. Mech. Phys. Solids
– volume: 125
  start-page: 499
  year: 2015
  end-page: 508
  ident: br0070
  publication-title: Compos. Struct.
– volume: 1
  start-page: 1
  year: 2014
  end-page: 12
  ident: br0090
  publication-title: Asia Pac. J. Comput. Eng.
– year: 2020
  ident: br0500
  article-title: Neural Networks and Deep Learning
– volume: 272
  year: 2021
  ident: br0350
  publication-title: Compos. Struct.
– volume: 209
  year: 2022
  ident: br0220
  publication-title: Appl. Therm. Eng.
– volume: 21
  start-page: 593
  year: 1998
  end-page: 626
  ident: br0550
  publication-title: J. Therm. Stresses
– volume: 39
  start-page: 2720
  year: 2019
  end-page: 2730
  ident: br0180
  publication-title: J. Eur. Ceram. Soc.
– volume: 224
  year: 2022
  ident: br0420
  publication-title: Compos. Sci. Technol.
– volume: 119
  start-page: 103
  year: 2018
  end-page: 115
  ident: br0080
  publication-title: Adv. Eng. Softw.
– volume: 56
  start-page: 280
  year: 2015
  end-page: 289
  ident: br0160
  publication-title: Int. J. Solids Struct.
– volume: 2
  start-page: 19
  year: 2008
  end-page: 34
  ident: br0110
  publication-title: Comput. Exp. Simul. Eng. Sci.
– volume: 127
  start-page: 908
  year: 2018
  end-page: 916
  ident: br0250
  publication-title: Int. J. Heat Mass Transf.
– volume: 184
  year: 2020
  ident: br0320
  publication-title: Comput. Mater. Sci.
– volume: 204
  start-page: 536
  year: 2018
  end-page: 547
  ident: br0230
  publication-title: Compos. Struct.
– volume: 179
  year: 2021
  ident: br0240
  publication-title: Int. J. Heat Mass Transf.
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: br0510
  publication-title: J. Comput. Appl. Math.
– volume: 118
  year: 2023
  ident: br0480
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 184
  year: 2019
  ident: br0290
  publication-title: Compos. Sci. Technol.
– volume: 120
  start-page: 400
  year: 2017
  end-page: 426
  ident: br0120
  publication-title: Int. J. Therm. Sci.
– volume: 33
  start-page: 1699
  year: 1999
  ident: 10.1016/j.cpc.2023.108969_br0060
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199839903301803
– volume: 118
  year: 2023
  ident: 10.1016/j.cpc.2023.108969_br0480
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2022.107000
– volume: 31
  start-page: 593
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0270
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2021-0110
– volume: 121
  start-page: 1
  year: 2018
  ident: 10.1016/j.cpc.2023.108969_br0460
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.03.005
– volume: 374
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0260
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113591
– volume: 88
  start-page: 97
  year: 2014
  ident: 10.1016/j.cpc.2023.108969_br0190
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2014.05.002
– volume: 29
  start-page: 2261
  year: 1994
  ident: 10.1016/j.cpc.2023.108969_br0540
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00363413
– volume: 131
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0300
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0089072
– volume: 14
  start-page: 3143
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0360
  publication-title: Materials
  doi: 10.3390/ma14123143
– volume: 119
  start-page: 205
  year: 2017
  ident: 10.1016/j.cpc.2023.108969_br0150
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2017.06.023
– volume: 125
  start-page: 499
  year: 2015
  ident: 10.1016/j.cpc.2023.108969_br0070
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.02.009
– volume: 204
  start-page: 536
  year: 2018
  ident: 10.1016/j.cpc.2023.108969_br0230
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.07.128
– volume: 179
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0240
  publication-title: Int. J. Heat Mass Transf.
– volume: 38
  start-page: 1333
  year: 2016
  ident: 10.1016/j.cpc.2023.108969_br0140
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-016-0497-7
– volume: 184
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0290
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107861
– volume: 127
  start-page: 908
  year: 2018
  ident: 10.1016/j.cpc.2023.108969_br0250
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.08.082
– volume: 13
  start-page: 213
  year: 1965
  ident: 10.1016/j.cpc.2023.108969_br0040
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(65)90010-4
– volume: 267
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0370
  publication-title: Compos. Struct.
– volume: 2
  start-page: 19
  year: 2008
  ident: 10.1016/j.cpc.2023.108969_br0110
  publication-title: Comput. Exp. Simul. Eng. Sci.
– volume: 33
  start-page: 732
  year: 2012
  ident: 10.1016/j.cpc.2023.108969_br0450
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457632.2011.635988
– year: 2004
  ident: 10.1016/j.cpc.2023.108969_br0560
– volume: 119
  start-page: 103
  year: 2018
  ident: 10.1016/j.cpc.2023.108969_br0080
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.03.001
– volume: 1
  start-page: 15
  year: 2015
  ident: 10.1016/j.cpc.2023.108969_br0440
  publication-title: Mech. Eng. Lett.
  doi: 10.1299/mel.15-00389
– volume: 139
  start-page: 412
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0100
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.031
– volume: 39
  start-page: 2720
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0180
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.02.035
– volume: 127
  start-page: 20
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0340
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.03.004
– volume: 184
  year: 2020
  ident: 10.1016/j.cpc.2023.108969_br0320
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109850
– volume: 70
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0280
  publication-title: Acta Phys. Sin.
– volume: 154
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0380
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104506
– volume: 10
  start-page: 343
  year: 1962
  ident: 10.1016/j.cpc.2023.108969_br0030
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(62)90005-4
– volume: 115
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0310
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.cpc.2023.108969_br0090
  publication-title: Asia Pac. J. Comput. Eng.
  doi: 10.1186/2196-1166-1-5
– volume: 56
  start-page: 280
  year: 2015
  ident: 10.1016/j.cpc.2023.108969_br0160
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.10.008
– year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0430
  publication-title: Compos. Struct.
– volume: 47
  start-page: 303
  year: 2005
  ident: 10.1016/j.cpc.2023.108969_br0530
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2004.11.001
– volume: 209
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0220
  publication-title: Appl. Therm. Eng.
– volume: 21
  start-page: 593
  year: 1998
  ident: 10.1016/j.cpc.2023.108969_br0550
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739808956165
– year: 2018
  ident: 10.1016/j.cpc.2023.108969_br0130
  publication-title: Eng. Comput.
– volume: 213
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0390
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110341
– volume: 120
  start-page: 400
  year: 2017
  ident: 10.1016/j.cpc.2023.108969_br0120
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.05.020
– volume: 21
  start-page: 1173
  year: 2017
  ident: 10.1016/j.cpc.2023.108969_br0200
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0135
– volume: 169
  start-page: 95
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0470
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.04.017
– volume: 40
  start-page: 511
  year: 2009
  ident: 10.1016/j.cpc.2023.108969_br0010
  publication-title: Composites, Part B, Eng.
  doi: 10.1016/j.compositesb.2009.02.003
– year: 2020
  ident: 10.1016/j.cpc.2023.108969_br0500
– volume: 236
  start-page: 2741
  year: 2012
  ident: 10.1016/j.cpc.2023.108969_br0510
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– volume: 171
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0020
  publication-title: Int. J. Therm. Sci.
– volume: 224
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0420
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109425
– volume: 272
  year: 2021
  ident: 10.1016/j.cpc.2023.108969_br0350
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114137
– volume: 345
  start-page: 1138
  year: 2019
  ident: 10.1016/j.cpc.2023.108969_br0330
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.020
– volume: 18
  start-page: 272
  year: 2020
  ident: 10.1016/j.cpc.2023.108969_br0210
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.18.272
– volume: 45
  start-page: 2827
  year: 2015
  ident: 10.1016/j.cpc.2023.108969_br0520
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2387067
– volume: 21
  start-page: 571
  year: 1973
  ident: 10.1016/j.cpc.2023.108969_br0050
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(73)90064-3
– volume: 238
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0410
  publication-title: Composites, Part B, Eng.
  doi: 10.1016/j.compositesb.2022.109879
– volume: 22
  start-page: 539
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0400
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-022-00589-z
– year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0170
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2022
  ident: 10.1016/j.cpc.2023.108969_br0490
  publication-title: Comput. Mech.
SSID ssj0007793
Score 2.4489357
Snippet In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108969
SubjectTerms Artificial neural network
Intelligent optimization algorithm
Nonlinear thermal performances
Random heterogeneous materials
Wavelet transform
Title Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations
URI https://dx.doi.org/10.1016/j.cpc.2023.108969
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiQuiKcoL_nACZQqiZNNfKygqCBUVaKI5RQ5jl22SpPVdreP38Pv4L8xYztOdksRPXCJdi3HcXa-nfk8Hs8Q8jqRTLNEVUHKEh0kmRjj_q4IWAn0mYWhKKU5KPw529_PJxN-MBr96s7CnNVZ0-QXF3z2X0UNbSBsPDp7A3H7QaEBPoPQ4Qpih-s_Cf6LqnXQgiY4cUcs354LrC6xCOrODWLLRpsIw9kcd2pM7HNjs2YIE3YI-hoThzSYDtbWl0BWCSv5-hLIJQijhQkojJ8Fymtfy_p0wfZV7Qn2muLZZlNqxYykp0fL-cA_2KVHcGUlnI_lFIPc-yMrnvHDmvnox9JgDp7l0fjeRRTvidZHEgnj_f2mplo5s2z2XYzn9vvSNzpXR5x00dG9-gajgQnfhuo75ulAAUdhzm3tlyu2wbopjrflDFNXxmy777uah3vNPvqoxS4g7riAIQocorBD3CKbcZZyUKqbOx93J588Fcgyl_XZzbvbVjcBhmvz-DMxGpCdw_vknlul0B2LrgdkpJqH5M6BldAj8vMKxug6xqjFGAWM0R5j1GOMOozRIcZoq6nFGF3BGPUYo4gx2mGMDjFGVzH2mHz9sHv4bi9w1T4CCfRpEYxFyqXSwDejMgqZYjxnocpZKSQaGh3ynOuoSuJYZBy-MS2BrkteVkKOdSXYE7IBL6GeElqpKgfVxPMI9JCscBEk0wpsu8aq1nK8RcLupy6kS4WPFVnq4loRb5E3_paZzQPzt85JJ7_CEVlLUAvA4vW3PbvJM56Tu_1f5AXZWMyX6iW5Lc8W09P5KwfE3xwOysw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-optimization+wavelet-learning+method+for+predicting+nonlinear+thermal+conductivity+of+highly+heterogeneous+materials+with+randomly+hierarchical+configurations&rft.jtitle=Computer+physics+communications&rft.au=Linghu%2C+Jiale&rft.au=Dong%2C+Hao&rft.au=Gao%2C+Weifeng&rft.au=Nie%2C+Yufeng&rft.date=2024-02-01&rft.issn=0010-4655&rft.volume=295&rft.spage=108969&rft_id=info:doi/10.1016%2Fj.cpc.2023.108969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon