Boron-incorporated IrO2-Ta2O5 coating as an efficient electrocatalyst for acidic oxygen evolution reaction

[Display omitted] •The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 491; p. 152040
Main Authors: Huang, Quanbo, Zhuang, Shaojie, Zheng, Yuexi, Peng, Xinyuan, Ye, Zhiguo, Li, Duosheng
Format: Journal Article
Language:English
Published: Elsevier B.V 01.07.2024
Subjects:
ISSN:1385-8947, 1873-3212
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of the electrocatalysts. The Ir-based electrocatalysts for the acidic oxygen evolution reaction (OER) have demonstrated remarkable durability. Enhancing the Ir-based electrocatalytic activity still remains crucial owing to the scarcity of iridium. Here, a high-temperature sintering technique is employed to fabricate a boron (B)-incorporated IrO2-Ta2O5 coating with an almost perfect rutile-type crystal structure on a corrosion-resistant titanium substrate, ensuring exceptional stability for the acidic OER. The B-incorporated IrO2-Ta2O5 electrode fabricated in a mixed solution of 0.6 M H3BO3, exhibits an overpotential of 210 mV at a current density of 10 mA cm−2 and a lower Tafel slope of 34.2 mV dec−1 in a 0.5 M H2SO4 solution, which is far lower than the 272 mV overpotential and the 45.3 mV dec−1 of the IrO2-Ta2O5/Ti electrode. The electrode possesses a minimal potential increase even after undergoing continuous OER for 400 h at a high current density of 100 mA cm−2 in a 0.5 M H2SO4 solution. The incorporation of B species into IrO2-Ta2O5 effectively fine-tunes the electronic structure of Ir active sites, leading to a substantial enhancement of the intrinsic electrocatalytic activity. This study provides promising prospects for reducing the energy consumption of noble IrO2-based electrocatalysts in the practical application of electrochemical industry for the acidic OER.
AbstractList [Display omitted] •The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of the electrocatalysts. The Ir-based electrocatalysts for the acidic oxygen evolution reaction (OER) have demonstrated remarkable durability. Enhancing the Ir-based electrocatalytic activity still remains crucial owing to the scarcity of iridium. Here, a high-temperature sintering technique is employed to fabricate a boron (B)-incorporated IrO2-Ta2O5 coating with an almost perfect rutile-type crystal structure on a corrosion-resistant titanium substrate, ensuring exceptional stability for the acidic OER. The B-incorporated IrO2-Ta2O5 electrode fabricated in a mixed solution of 0.6 M H3BO3, exhibits an overpotential of 210 mV at a current density of 10 mA cm−2 and a lower Tafel slope of 34.2 mV dec−1 in a 0.5 M H2SO4 solution, which is far lower than the 272 mV overpotential and the 45.3 mV dec−1 of the IrO2-Ta2O5/Ti electrode. The electrode possesses a minimal potential increase even after undergoing continuous OER for 400 h at a high current density of 100 mA cm−2 in a 0.5 M H2SO4 solution. The incorporation of B species into IrO2-Ta2O5 effectively fine-tunes the electronic structure of Ir active sites, leading to a substantial enhancement of the intrinsic electrocatalytic activity. This study provides promising prospects for reducing the energy consumption of noble IrO2-based electrocatalysts in the practical application of electrochemical industry for the acidic OER.
ArticleNumber 152040
Author Huang, Quanbo
Ye, Zhiguo
Li, Duosheng
Zhuang, Shaojie
Peng, Xinyuan
Zheng, Yuexi
Author_xml – sequence: 1
  givenname: Quanbo
  surname: Huang
  fullname: Huang, Quanbo
– sequence: 2
  givenname: Shaojie
  surname: Zhuang
  fullname: Zhuang, Shaojie
– sequence: 3
  givenname: Yuexi
  surname: Zheng
  fullname: Zheng, Yuexi
– sequence: 4
  givenname: Xinyuan
  surname: Peng
  fullname: Peng, Xinyuan
– sequence: 5
  givenname: Zhiguo
  orcidid: 0000-0002-2669-8182
  surname: Ye
  fullname: Ye, Zhiguo
  email: yezhiguo2008@163.com
– sequence: 6
  givenname: Duosheng
  surname: Li
  fullname: Li, Duosheng
  email: ldscad@163.com
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDyT4kcSOWEHFo1KlbsramjrjylGIK8dU9O9JVFYsWM1dzBndOQsy60OPhNxzlnPGq4c2t9jmgoki56VgBbsic66VzKTgYjZmqctM14W6IYthaBljVc3rOWmfQwx95nsb4jFESNjQddyKbAdiW1IbIPn-QGGg0FN0zluPfaLYoU0xWEjQnYdEXYgUrG-8peH7fMBx9xS6r-RDTyOCncItuXbQDXj3O5fk4_Vlt3rPNtu39eppk9mxasrKYq9qrVVTSVYoVdXacS2UdLIRCtGB1txVheB1ta8rVpT7SkmQ2gGKogEhl4Rf7toYhiGiM8foPyGeDWdmkmVaM8oykyxzkTUy6g9jfYKpdYrgu3_JxwuJ40snj9EMkyKLjY-jI9ME_w_9A86Nhj0
CitedBy_id crossref_primary_10_1016_j_cej_2024_154703
crossref_primary_10_1016_j_mssp_2025_109774
crossref_primary_10_1002_adfm_202414449
crossref_primary_10_1007_s10562_025_05037_1
crossref_primary_10_1039_D4MH01315H
crossref_primary_10_1016_j_ijhydene_2024_10_255
crossref_primary_10_1039_D4QM00842A
crossref_primary_10_1002_aenm_202403464
crossref_primary_10_1002_EXP_20240010
crossref_primary_10_1016_j_jes_2025_03_053
Cites_doi 10.1016/j.jpowsour.2023.233174
10.1002/adfm.201704796
10.1016/j.matt.2020.07.021
10.1016/j.jelechem.2006.11.008
10.1016/j.cej.2022.134571
10.1038/s41467-021-23390-8
10.1021/acscatal.9b05611
10.1016/j.scitotenv.2022.160366
10.1016/j.cej.2022.135699
10.1016/j.electacta.2011.10.044
10.1007/s40843-021-1687-5
10.1039/D1TA10324E
10.1002/anie.202112870
10.1016/j.joule.2021.05.018
10.1021/jp047349j
10.1038/s41467-018-07678-w
10.1002/advs.202104636
10.1016/j.nanoen.2019.02.020
10.1016/j.ceramint.2019.06.255
10.1016/j.cej.2021.134210
10.1016/j.corsci.2019.01.018
10.1002/adfm.202108465
10.1016/j.ijhydene.2011.09.087
10.1016/S0013-4686(99)00135-8
10.1038/s41929-021-00715-w
10.1002/anie.202212341
10.1021/acsami.0c15687
10.1016/j.joule.2023.02.012
10.1149/1945-7111/ac1dcd
10.1039/D3QI01203D
10.1016/j.cej.2022.140908
10.1039/D0CY00919A
10.1016/j.apcatb.2020.118643
10.1016/j.joule.2021.05.005
10.1016/j.apcata.2014.04.043
10.1021/nl4028507
10.1021/acsami.1c18739
10.1021/acscatal.6b03246
10.1038/s41598-019-45401-x
10.1016/j.hydromet.2010.11.006
10.1002/adma.202004243
10.1021/jacs.3c07777
10.1021/jacs.8b11456
10.1016/j.jhazmat.2020.123018
10.1016/j.ijhydene.2023.03.360
10.1016/j.cej.2020.128340
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.152040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2024_152040
S1385894724035277
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
~HD
ID FETCH-LOGICAL-c212t-54b79887d630477698f18273f3d27eefa881f642196b96045b673a38fae24da23
ISSN 1385-8947
IngestDate Tue Nov 18 22:10:12 EST 2025
Sat Nov 29 03:30:58 EST 2025
Sat Jul 27 15:41:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Durability
Electrocatalytic activity
Oxygen evolution reaction
IrO2
Ta2O5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-54b79887d630477698f18273f3d27eefa881f642196b96045b673a38fae24da23
ORCID 0000-0002-2669-8182
ParticipantIDs crossref_primary_10_1016_j_cej_2024_152040
crossref_citationtrail_10_1016_j_cej_2024_152040
elsevier_sciencedirect_doi_10_1016_j_cej_2024_152040
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Zhang, Cheng (b0035) 2011; 105
Wang, Hao, Wang, Li, Ren, Sun, Hu, Li, Peng (b0070) 2023; 10
Vignolo-González, Laha, Jiménez-Solano, Oshima, Duppel, Schützendübe, Lotsch (b0075) 2020; 3
Baik, Cho, Cha, Cho, Jang, Pak (b0230) 2023; 575
Taie, Peng, Kulkarni, Zenyuk, Weber, Hagen, Danilovic (b0005) 2020; 12
Kiessling, Fornaciari, Anderson, Peng, Gerstmayr, Gerhardt, McKinney, Serov, Kim, Zulevi, Weber, Danilovic (b0015) 2021; 168
Shi, Li, Jiang, Wang, Wang, Li, Yang, Chu, Bai, Yang, Ni, Wang, Zhang, Jiang, Liu, Ge, Xing (b0125) 2022; 61
Li, Pan, Wu, He, Qin, Luo, Yang, Zeng (b0135) 2023; 48
Hao, Ye, Xu, Li, Huang, Peng, Li, Jin, Ma (b0160) 2021; 410
Gui, Chen, Chen, Song, Yu, Zhu, Hu, Liu, Zheng, Ze, You, Yeasmin (b0025) 2020; 399
Chen, Wu, Adler, Wang (b0180) 2021; 5
Yang, Yu, Ai, Yan, Duan, Chen, Li, Wang, Zhang, Huang, Chen, Zou (b0065) 2018; 9
Wang, Zhai, Xia, Wu, Zhang, Li, Ran, Gao, Zhang, Fan, Sun, Hou (b0190) 2021; 60
Qiao, Luo, Cai, Kao, Lan, Meng, Lu, Peng, Ma, Tan (b0250) 2023
Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (b0240) 2004; 108
Zheng, Shang, Pei, Ma, Ye, Peng, Li (b0220) 2022; 433
Gao, Xu, Hung, Liu, Cai, Zeng, Jia, Chen, Xiao, Li, Huang, Liu (b0205) 2019; 141
Kang, Qiu, Hu, Zhong, Gao, Huang, Wan, Liu, Duan, Guo (b0170) 2021; 4
Joshi, Huang, Yadav, Hara, Yoshimura (b0150) 2020; 10
Oakton, Lebedev, Povia, Abbott, Fabbri, Fedorov, Nachtegaal, Copéret, Schmidt (b0105) 2017; 7
Liu, Zhang, Fang, Li, Sendeku, Wang, Wu, Li, Ge, Zhuang, Zhou, Kuang, Sun (b0245) 2023; 7
Kong, Zhang, Yin, Wang, Du, Chen, Zhang (b0100) 2012; 37
Shirvanian, van Berkel (b0010) 2020
Zhao, Luo, Chu, Peng, Liu, Wu, Liu, de Groot, Tan (b0060) 2019; 59
Hao, Wang, Zheng, Qiu, Xu, He, Lei, Zhang (b0095) 2020; 266
Watling (b0030) 2014; 146
Tang, Kong, Wang, Xu, Wang, Wu, Zheng (b0115) 2013; 13
Le Luu, Ngan (b0145) 2023; 860
Cheng, Shapter, Li, Gao (b0020) 2021; 57
Wu, Wang, Shi, Wang, Yang, Xiao, Ge, Xing, Liu (b0050) 2022; 10
Cheng, Pi, Shao, Huang (b0155) 2021; 64
Shi, Wang, Li, Wang, Wang, Li, Xu, Jiang, Liu, Xing, Ge (b0195) 2021; 5
She, Zhao, Ma, Chen, Sun, Pan (b0045) 2021; 32
Wu, Yao, Zhao, Li, Liu (b0175) 2022; 439
Xu, Lian, Wei, Li, Bondarchuk, Zhang, Yu, Araujo, Amorim, Wang, Li, Liu (b0055) 2020; 10
Monteseguro, Sans, Cuartero, Cova, Abrikosov, Olovsson, Popescu, Pascarelli, Garbarino, Jönsson, Irifune, Errandonea (b0210) 2019; 9
Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (b0085) 2017; 28
Xu, Liu, Li, Wang (b0120) 2012; 59
Huang, Pei, Ma, Ye, Peng, Li, Jin (b0215) 2022; 14
Hao, Hung, Zeng, Wang, Zhang, Kuo, Wang, Zhao, Zhang, Chen, Peng (b0200) 2023; 145
Liu, Song, Cheng, Wang, Saad, Deng, Shen, Huang, Cai (b0225) 2021; 431
Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0185) 2007; 607
Huang, Sheng, Ross, Han, Wang, Song, Jin (b0235) 2021; 12
Mehdipour, Tabaian, Firoozi (b0130) 2019; 45
Debecker, Farin, Gaigneaux, Sanchez, Sassoye (b0080) 2014; 481
Li, Wang, Shao, Huang (b0040) 2021; 33
Lassali, Boodts, Bulhões (b0110) 1999; 44
Fan, Jia, Wang, Fan, Wu, Zhao, Cui (b0165) 2023; 455
Zheng, Qin, Ma, Chen, Ning, Yang, Mao, Wang (b0090) 2022; 9
Xu, Haarberg, Seland, Sunde, Ratvik, Holmin, Gustavsson, Afvander, Zimmerman, Åkre (b0140) 2019; 150
Liu (10.1016/j.cej.2024.152040_b0225) 2021; 431
Baik (10.1016/j.cej.2024.152040_b0230) 2023; 575
Lim (10.1016/j.cej.2024.152040_b0085) 2017; 28
Hao (10.1016/j.cej.2024.152040_b0160) 2021; 410
Xu (10.1016/j.cej.2024.152040_b0055) 2020; 10
Wang (10.1016/j.cej.2024.152040_b0070) 2023; 10
Kong (10.1016/j.cej.2024.152040_b0100) 2012; 37
Wang (10.1016/j.cej.2024.152040_b0190) 2021; 60
Shi (10.1016/j.cej.2024.152040_b0125) 2022; 61
Kiessling (10.1016/j.cej.2024.152040_b0015) 2021; 168
Taie (10.1016/j.cej.2024.152040_b0005) 2020; 12
Gui (10.1016/j.cej.2024.152040_b0025) 2020; 399
Kang (10.1016/j.cej.2024.152040_b0170) 2021; 4
Li (10.1016/j.cej.2024.152040_b0040) 2021; 33
Shi (10.1016/j.cej.2024.152040_b0195) 2021; 5
Watling (10.1016/j.cej.2024.152040_b0030) 2014; 146
Cheng (10.1016/j.cej.2024.152040_b0020) 2021; 57
Rossmeisl (10.1016/j.cej.2024.152040_b0185) 2007; 607
Lassali (10.1016/j.cej.2024.152040_b0110) 1999; 44
Yang (10.1016/j.cej.2024.152040_b0065) 2018; 9
Vignolo-González (10.1016/j.cej.2024.152040_b0075) 2020; 3
Tang (10.1016/j.cej.2024.152040_b0115) 2013; 13
Oakton (10.1016/j.cej.2024.152040_b0105) 2017; 7
Li (10.1016/j.cej.2024.152040_b0135) 2023; 48
Cheng (10.1016/j.cej.2024.152040_b0155) 2021; 64
Qiao (10.1016/j.cej.2024.152040_b0250) 2023
Mehdipour (10.1016/j.cej.2024.152040_b0130) 2019; 45
Wu (10.1016/j.cej.2024.152040_b0050) 2022; 10
Fan (10.1016/j.cej.2024.152040_b0165) 2023; 455
Debecker (10.1016/j.cej.2024.152040_b0080) 2014; 481
Zhu (10.1016/j.cej.2024.152040_b0035) 2011; 105
Shirvanian (10.1016/j.cej.2024.152040_b0010) 2020
Chen (10.1016/j.cej.2024.152040_b0180) 2021; 5
Le Luu (10.1016/j.cej.2024.152040_b0145) 2023; 860
Zhao (10.1016/j.cej.2024.152040_b0060) 2019; 59
Xu (10.1016/j.cej.2024.152040_b0120) 2012; 59
Wu (10.1016/j.cej.2024.152040_b0175) 2022; 439
Joshi (10.1016/j.cej.2024.152040_b0150) 2020; 10
Liu (10.1016/j.cej.2024.152040_b0245) 2023; 7
Hao (10.1016/j.cej.2024.152040_b0095) 2020; 266
Huang (10.1016/j.cej.2024.152040_b0215) 2022; 14
Hao (10.1016/j.cej.2024.152040_b0200) 2023; 145
Zheng (10.1016/j.cej.2024.152040_b0090) 2022; 9
She (10.1016/j.cej.2024.152040_b0045) 2021; 32
Zheng (10.1016/j.cej.2024.152040_b0220) 2022; 433
Xu (10.1016/j.cej.2024.152040_b0140) 2019; 150
Huang (10.1016/j.cej.2024.152040_b0235) 2021; 12
Nørskov (10.1016/j.cej.2024.152040_b0240) 2004; 108
Monteseguro (10.1016/j.cej.2024.152040_b0210) 2019; 9
Gao (10.1016/j.cej.2024.152040_b0205) 2019; 141
References_xml – volume: 61
  start-page: e202212341
  year: 2022
  end-page: e202212352
  ident: b0125
  article-title: Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb
  publication-title: Angew. Chem.International Edition
– volume: 860
  start-page: 160366
  year: 2023
  end-page: 160378
  ident: b0145
  article-title: Fabrication of high performance Ti/SnO
  publication-title: Science of the Total Enviroment
– volume: 13
  start-page: 5350
  year: 2013
  end-page: 5355
  ident: b0115
  article-title: Photoelectrochemical detection of glutathione by IrO
  publication-title: Nano Lett.
– volume: 57
  start-page: 451
  year: 2021
  end-page: 468
  ident: b0020
  article-title: Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy
  publication-title: Chemistry
– volume: 44
  start-page: 4203
  year: 1999
  end-page: 4216
  ident: b0110
  article-title: Charging processes and electrocatalytic properties of IrO
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 6015
  year: 2023
  end-page: 6022
  ident: b0070
  article-title: Charge-enriched RuO
  publication-title: Inorg. Chem. Front.
– volume: 10
  start-page: 13170
  year: 2022
  end-page: 13189
  ident: b0050
  article-title: Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis
  publication-title: J. Mater. Chem. A
– start-page: 106704
  year: 2020
  end-page: 106722
  ident: b0010
  article-title: Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review0
  publication-title: ElectrochemistryCommunications 114
– start-page: e2305479
  year: 2023
  end-page: e2305488
  ident: b0250
  article-title: Constructing Nanoporous Ir/Ta
  publication-title: Small
– volume: 168
  start-page: 084512
  year: 2021
  end-page: 084521
  ident: b0015
  article-title: Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 105
  year: 2012
  end-page: 112
  ident: b0120
  article-title: The electrocatalytic properties of an IrO
  publication-title: Electrochim. Acta
– volume: 575
  start-page: 233174
  year: 2023
  end-page: 233184
  ident: b0230
  article-title: Electron-rich Ir nanostructure supported on mesoporous Ta
  publication-title: J. Power Sources
– volume: 28
  start-page: 1704796
  year: 2017
  end-page: 1704803
  ident: b0085
  article-title: Ultrathin IrO Nanoneedles for Electrochemical Water Oxidation
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 59
  year: 2012
  end-page: 67
  ident: b0100
  article-title: Electrochemical studies of Pt/Ir–IrO
  publication-title: Int. J. Hydrogen Energy
– volume: 439
  start-page: 135699
  year: 2022
  end-page: 135708
  ident: b0175
  article-title: La-RuO
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 5236
  year: 2018
  end-page: 5245
  ident: b0065
  article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO
  publication-title: Nat. Commun.
– volume: 12
  start-page: 52701
  year: 2020
  end-page: 52712
  ident: b0005
  article-title: Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3571
  year: 2020
  end-page: 3579
  ident: b0055
  article-title: Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media
  publication-title: ACS Catal.
– volume: 9
  start-page: 2104636
  year: 2022
  end-page: 2104649
  ident: b0090
  article-title: Strong Oxide-Support Interaction over IrO2/V2O5 for Efficient pH-Universal Water Splitting
  publication-title: Adv. Sci.
– volume: 10
  start-page: 6599
  year: 2020
  end-page: 6610
  ident: b0150
  article-title: Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction
  publication-title: Cat. Sci. Technol.
– volume: 141
  start-page: 3014
  year: 2019
  end-page: 3023
  ident: b0205
  article-title: Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation
  publication-title: Journal of the American Chemical Society
– volume: 399
  start-page: 123018
  year: 2020
  end-page: 123056
  ident: b0025
  article-title: Preparation and characterization of ZnO/PEG-Co(II)-PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol
  publication-title: J. Hazard. Mater.
– volume: 5
  start-page: 1704
  year: 2021
  end-page: 1731
  ident: b0180
  article-title: Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design
  publication-title: Joule
– volume: 48
  start-page: 26021
  year: 2023
  end-page: 26031
  ident: b0135
  article-title: Highly active and stable IrO
  publication-title: Int. J. Hydrogen Energy
– volume: 146
  start-page: 96
  year: 2014
  end-page: 110
  ident: b0030
  article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 2
  publication-title: Review of Acidic Chloride Process Options, Hydrometallurgy
– volume: 3
  start-page: 464
  year: 2020
  end-page: 486
  ident: b0075
  article-title: Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO
  publication-title: Matter
– volume: 59
  start-page: 146
  year: 2019
  end-page: 153
  ident: b0060
  article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media
  publication-title: Nano Energy
– volume: 266
  start-page: 118643
  year: 2020
  end-page: 118669
  ident: b0095
  article-title: Tuning electronic correlations of ultra-small IrO
  publication-title: Appl Catal B
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: b0185
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 1050
  year: 2021
  end-page: 1058
  ident: b0170
  article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation
  publication-title: Nat. Catal.
– volume: 60
  start-page: 27126
  year: 2021
  end-page: 27134
  ident: b0190
  article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2164
  year: 2021
  end-page: 2176
  ident: b0195
  article-title: Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis
  publication-title: Joule
– volume: 9
  start-page: 8940
  year: 2019
  end-page: 8949
  ident: b0210
  article-title: Phase stability and electronic structure of iridium metal at the megabar range
  publication-title: Sci. Rep.
– volume: 45
  start-page: 19971
  year: 2019
  end-page: 19980
  ident: b0130
  article-title: Effect of IrO
  publication-title: Ceram. Int.
– volume: 481
  start-page: 11
  year: 2014
  end-page: 18
  ident: b0080
  article-title: Total oxidation of propane with a nano-RuO
  publication-title: Appl. Catal. A
– volume: 7
  start-page: 2346
  year: 2017
  end-page: 2352
  ident: b0105
  article-title: IrO
  publication-title: ACS Catal.
– volume: 410
  start-page: 128340
  year: 2021
  end-page: 128350
  ident: b0160
  article-title: A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites
  publication-title: Chemical Engineering Journal
– volume: 32
  start-page: 2108465
  year: 2021
  end-page: 2108476
  ident: b0045
  article-title: On the Durability of Iridium-Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 558
  year: 2023
  end-page: 573
  ident: b0245
  article-title: Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media
  publication-title: Joule
– volume: 150
  start-page: 76
  year: 2019
  end-page: 90
  ident: b0140
  article-title: The durability of the thermally decomposed IrO
  publication-title: Corros. Sci.
– volume: 431
  start-page: 134210
  year: 2021
  end-page: 134220
  ident: b0225
  article-title: Mesoporous IrNiTa Metal Glass Ribbon as a Superior Self-standing Bifunctional Catalyst for Water Electrolysis
  publication-title: Chemical Engineering Journal
– volume: 14
  start-page: 784
  year: 2022
  end-page: 793
  ident: b0215
  article-title: Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction
  publication-title: ACS Applied Materials Interfaces
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17893
  ident: b0240
  article-title: Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
  publication-title: J. Phys. Chem. B
– volume: 105
  start-page: 304
  year: 2011
  end-page: 313
  ident: b0035
  article-title: A literature review of titanium solvent extraction in chloride media
  publication-title: Hydrometall.
– volume: 12
  start-page: 3036
  year: 2021
  end-page: 3047
  ident: b0235
  article-title: Modifying redox properties and local bonding of Co
  publication-title: Nat. Commun.
– volume: 455
  start-page: 140908
  year: 2023
  end-page: 140917
  ident: b0165
  article-title: High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting
  publication-title: Chem. Eng. J.
– volume: 433
  start-page: 134571
  year: 2022
  end-page: 134579
  ident: b0220
  article-title: Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 2004243
  year: 2021
  end-page: 2004267
  ident: b0040
  article-title: Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction
  publication-title: Adv. Mater.
– volume: 64
  start-page: 2958
  year: 2021
  end-page: 2966
  ident: b0155
  article-title: Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction
  publication-title: Sci. China Mater.
– volume: 145
  start-page: 23659
  year: 2023
  end-page: 23669
  ident: b0200
  article-title: Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics
  publication-title: J. Am. Chem. Soc.
– volume: 575
  start-page: 233174
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0230
  article-title: Electron-rich Ir nanostructure supported on mesoporous Ta2O5 for enhanced activity and stability of oxygen evolution reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233174
– volume: 28
  start-page: 1704796
  issue: 4
  year: 2017
  ident: 10.1016/j.cej.2024.152040_b0085
  article-title: Ultrathin IrO Nanoneedles for Electrochemical Water Oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704796
– volume: 3
  start-page: 464
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0075
  article-title: Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.021
– volume: 607
  start-page: 83
  issue: 1–2
  year: 2007
  ident: 10.1016/j.cej.2024.152040_b0185
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 433
  start-page: 134571
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0220
  article-title: Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134571
– volume: 12
  start-page: 3036
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0235
  article-title: Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23390-8
– volume: 10
  start-page: 3571
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0055
  article-title: Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05611
– volume: 860
  start-page: 160366
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0145
  article-title: Fabrication of high performance Ti/SnO2-Nb2O5 electrodes for electrochemical textile wastewater treatment
  publication-title: Science of the Total Enviroment
  doi: 10.1016/j.scitotenv.2022.160366
– volume: 439
  start-page: 135699
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0175
  article-title: La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135699
– volume: 59
  start-page: 105
  year: 2012
  ident: 10.1016/j.cej.2024.152040_b0120
  article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.10.044
– volume: 64
  start-page: 2958
  issue: 12
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0155
  article-title: Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-021-1687-5
– volume: 10
  start-page: 13170
  issue: 25
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0050
  article-title: Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10324E
– volume: 60
  start-page: 27126
  issue: 52
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0190
  article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112870
– volume: 5
  start-page: 2164
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0195
  article-title: Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.018
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.cej.2024.152040_b0240
  article-title: Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– start-page: 106704
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0010
  article-title: Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review0
  publication-title: ElectrochemistryCommunications 114
– volume: 9
  start-page: 5236
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2024.152040_b0065
  article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07678-w
– volume: 9
  start-page: 2104636
  issue: 11
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0090
  article-title: Strong Oxide-Support Interaction over IrO2/V2O5 for Efficient pH-Universal Water Splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104636
– volume: 59
  start-page: 146
  year: 2019
  ident: 10.1016/j.cej.2024.152040_b0060
  article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.020
– volume: 45
  start-page: 19971
  issue: 16
  year: 2019
  ident: 10.1016/j.cej.2024.152040_b0130
  article-title: Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2–Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.255
– volume: 431
  start-page: 134210
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0225
  article-title: Mesoporous IrNiTa Metal Glass Ribbon as a Superior Self-standing Bifunctional Catalyst for Water Electrolysis
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.134210
– start-page: e2305479
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0250
  article-title: Constructing Nanoporous Ir/Ta2O5 Interfaces on Metallic Glass for Durable Acidic Water Oxidation
  publication-title: Small
– volume: 150
  start-page: 76
  year: 2019
  ident: 10.1016/j.cej.2024.152040_b0140
  article-title: The durability of the thermally decomposed IrO2-Ta2O5 coated titanium anode in a sulfate solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.01.018
– volume: 32
  start-page: 2108465
  issue: 5
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0045
  article-title: On the Durability of Iridium-Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108465
– volume: 37
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.cej.2024.152040_b0100
  article-title: Electrochemical studies of Pt/Ir–IrO2 electrocatalyst as a bifunctional oxygen electrode
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.087
– volume: 44
  start-page: 4203
  issue: 24
  year: 1999
  ident: 10.1016/j.cej.2024.152040_b0110
  article-title: Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00135-8
– volume: 4
  start-page: 1050
  issue: 12
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0170
  article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00715-w
– volume: 61
  start-page: e202212341
  issue: 52
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0125
  article-title: Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb2O5-x Catalyst/Support Interfaces
  publication-title: Angew. Chem.International Edition
  doi: 10.1002/anie.202212341
– volume: 12
  start-page: 52701
  issue: 47
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0005
  article-title: Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15687
– volume: 7
  start-page: 558
  issue: 3
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0245
  article-title: Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media
  publication-title: Joule
  doi: 10.1016/j.joule.2023.02.012
– volume: 168
  start-page: 084512
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0015
  article-title: Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac1dcd
– volume: 10
  start-page: 6015
  issue: 20
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0070
  article-title: Charge-enriched RuO2 nanoparticles decorating TiO2 with Ti defects to promote oxygen evolution reaction in acidic media
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI01203D
– volume: 455
  start-page: 140908
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0165
  article-title: High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140908
– volume: 10
  start-page: 6599
  issue: 19
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0150
  article-title: Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction
  publication-title: Cat. Sci. Technol.
  doi: 10.1039/D0CY00919A
– volume: 266
  start-page: 118643
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0095
  article-title: Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.118643
– volume: 5
  start-page: 1704
  issue: 7
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0180
  article-title: Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.005
– volume: 481
  start-page: 11
  year: 2014
  ident: 10.1016/j.cej.2024.152040_b0080
  article-title: Total oxidation of propane with a nano-RuO2/TiO2 catalyst
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2014.04.043
– volume: 13
  start-page: 5350
  issue: 11
  year: 2013
  ident: 10.1016/j.cej.2024.152040_b0115
  article-title: Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl4028507
– volume: 14
  start-page: 784
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2024.152040_b0215
  article-title: Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction
  publication-title: ACS Applied Materials Interfaces
  doi: 10.1021/acsami.1c18739
– volume: 7
  start-page: 2346
  issue: 4
  year: 2017
  ident: 10.1016/j.cej.2024.152040_b0105
  article-title: IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03246
– volume: 9
  start-page: 8940
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2024.152040_b0210
  article-title: Phase stability and electronic structure of iridium metal at the megabar range
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45401-x
– volume: 105
  start-page: 304
  issue: 3–4
  year: 2011
  ident: 10.1016/j.cej.2024.152040_b0035
  article-title: A literature review of titanium solvent extraction in chloride media
  publication-title: Hydrometall.
  doi: 10.1016/j.hydromet.2010.11.006
– volume: 33
  start-page: 2004243
  issue: 50
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0040
  article-title: Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004243
– volume: 145
  start-page: 23659
  issue: 43
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0200
  article-title: Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c07777
– volume: 141
  start-page: 3014
  issue: 7
  year: 2019
  ident: 10.1016/j.cej.2024.152040_b0205
  article-title: Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.8b11456
– volume: 399
  start-page: 123018
  year: 2020
  ident: 10.1016/j.cej.2024.152040_b0025
  article-title: Preparation and characterization of ZnO/PEG-Co(II)-PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123018
– volume: 146
  start-page: 96
  year: 2014
  ident: 10.1016/j.cej.2024.152040_b0030
  article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 2
  publication-title: Review of Acidic Chloride Process Options, Hydrometallurgy
– volume: 57
  start-page: 451
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0020
  article-title: Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy
  publication-title: Chemistry
– volume: 48
  start-page: 26021
  issue: 67
  year: 2023
  ident: 10.1016/j.cej.2024.152040_b0135
  article-title: Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.03.360
– volume: 410
  start-page: 128340
  year: 2021
  ident: 10.1016/j.cej.2024.152040_b0160
  article-title: A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.128340
SSID ssj0006919
Score 2.4414828
Snippet [Display omitted] •The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 152040
SubjectTerms Durability
Electrocatalytic activity
IrO2
Oxygen evolution reaction
Ta2O5
Title Boron-incorporated IrO2-Ta2O5 coating as an efficient electrocatalyst for acidic oxygen evolution reaction
URI https://dx.doi.org/10.1016/j.cej.2024.152040
Volume 491
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieckHTlSuUudh-7igRbscdkEtUjlFduKwiVbJqk1Lyz_iXzKOnaS0gACJSxRN6zia-eKMJzPfIPRSqtSEN0IC2x9BgsxTRHEWEC6kp6UeByrKmmYT7Pycz2bi_WDwra2FWV2xsuTrtbj-r6YGGRjblM7-hbm7i4IAzsHocASzw_GPDP_acBIQQ7pgOYrBozybX1AylfQiHCaVbBKdpeFmNtkceVMROXTtcJpozmZR2-TKJE_zZFitN59NL4CVu-0h-JlJZ8-W5aAlHtA9wWFHS2HahkiT_mPDp5Mvef3VVhm7iISItiISp0sXw_4AJ6rqQ9utfHIpqyLX_Q_ayj8t9Trv13ornOXlZukeARfdoEGXCetCbntlN80q7fMQ0GSpOkfayjjziU_HPyztge0EtveasBGLYpToYmRmNV2gPEsbtcO-PTFzmakMb2FIGbuBDikLBSygh8dnJ7N33Ws_Ek0Xme7e2k_oTTLhzkQ_d4K2HJvpXXTH7UjwsUXSPTTQ5X10e4un8gEq9jGFe0xhhyksF1iWuMMU3sEUBkxhiylsMYU7TOEWUw_Rx7cn0zenxDXpIAkouyZhoAzlHUsj8wGXRYJnsGVlfuanlGmdSc7HmammFpEyREChipgvfZ5JTYNUUv8ROiirUj9GWKWhSsZ-prIAvHTY6mpwblPpUSVSxSN2hLxWa3HiGOxNI5WruE1VLGJQdGwUHVtFH6FX3ZBrS9_yuz8HrSli539avzIG3Px62JN_G_YU3eoB_wwd1POlfo5uJqs6X8xfOHR9B4jqqQw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron-incorporated+IrO2-Ta2O5+coating+as+an+efficient+electrocatalyst+for+acidic+oxygen+evolution+reaction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Huang%2C+Quanbo&rft.au=Zhuang%2C+Shaojie&rft.au=Zheng%2C+Yuexi&rft.au=Peng%2C+Xinyuan&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=491&rft_id=info:doi/10.1016%2Fj.cej.2024.152040&rft.externalDocID=S1385894724035277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon