Boron-incorporated IrO2-Ta2O5 coating as an efficient electrocatalyst for acidic oxygen evolution reaction
[Display omitted] •The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of...
Saved in:
| Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 491; p. 152040 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.07.2024
|
| Subjects: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of the electrocatalysts.
The Ir-based electrocatalysts for the acidic oxygen evolution reaction (OER) have demonstrated remarkable durability. Enhancing the Ir-based electrocatalytic activity still remains crucial owing to the scarcity of iridium. Here, a high-temperature sintering technique is employed to fabricate a boron (B)-incorporated IrO2-Ta2O5 coating with an almost perfect rutile-type crystal structure on a corrosion-resistant titanium substrate, ensuring exceptional stability for the acidic OER. The B-incorporated IrO2-Ta2O5 electrode fabricated in a mixed solution of 0.6 M H3BO3, exhibits an overpotential of 210 mV at a current density of 10 mA cm−2 and a lower Tafel slope of 34.2 mV dec−1 in a 0.5 M H2SO4 solution, which is far lower than the 272 mV overpotential and the 45.3 mV dec−1 of the IrO2-Ta2O5/Ti electrode. The electrode possesses a minimal potential increase even after undergoing continuous OER for 400 h at a high current density of 100 mA cm−2 in a 0.5 M H2SO4 solution. The incorporation of B species into IrO2-Ta2O5 effectively fine-tunes the electronic structure of Ir active sites, leading to a substantial enhancement of the intrinsic electrocatalytic activity. This study provides promising prospects for reducing the energy consumption of noble IrO2-based electrocatalysts in the practical application of electrochemical industry for the acidic OER. |
|---|---|
| AbstractList | [Display omitted]
•The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron species modulates the energy barrier of Ir sites for acidic OER.•A nearly complete rutile-type crystal structure ensures ultrahigh durability of the electrocatalysts.
The Ir-based electrocatalysts for the acidic oxygen evolution reaction (OER) have demonstrated remarkable durability. Enhancing the Ir-based electrocatalytic activity still remains crucial owing to the scarcity of iridium. Here, a high-temperature sintering technique is employed to fabricate a boron (B)-incorporated IrO2-Ta2O5 coating with an almost perfect rutile-type crystal structure on a corrosion-resistant titanium substrate, ensuring exceptional stability for the acidic OER. The B-incorporated IrO2-Ta2O5 electrode fabricated in a mixed solution of 0.6 M H3BO3, exhibits an overpotential of 210 mV at a current density of 10 mA cm−2 and a lower Tafel slope of 34.2 mV dec−1 in a 0.5 M H2SO4 solution, which is far lower than the 272 mV overpotential and the 45.3 mV dec−1 of the IrO2-Ta2O5/Ti electrode. The electrode possesses a minimal potential increase even after undergoing continuous OER for 400 h at a high current density of 100 mA cm−2 in a 0.5 M H2SO4 solution. The incorporation of B species into IrO2-Ta2O5 effectively fine-tunes the electronic structure of Ir active sites, leading to a substantial enhancement of the intrinsic electrocatalytic activity. This study provides promising prospects for reducing the energy consumption of noble IrO2-based electrocatalysts in the practical application of electrochemical industry for the acidic OER. |
| ArticleNumber | 152040 |
| Author | Huang, Quanbo Ye, Zhiguo Li, Duosheng Zhuang, Shaojie Peng, Xinyuan Zheng, Yuexi |
| Author_xml | – sequence: 1 givenname: Quanbo surname: Huang fullname: Huang, Quanbo – sequence: 2 givenname: Shaojie surname: Zhuang fullname: Zhuang, Shaojie – sequence: 3 givenname: Yuexi surname: Zheng fullname: Zheng, Yuexi – sequence: 4 givenname: Xinyuan surname: Peng fullname: Peng, Xinyuan – sequence: 5 givenname: Zhiguo orcidid: 0000-0002-2669-8182 surname: Ye fullname: Ye, Zhiguo email: yezhiguo2008@163.com – sequence: 6 givenname: Duosheng surname: Li fullname: Li, Duosheng email: ldscad@163.com |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzDyT4kcSOWEHFo1KlbsramjrjylGIK8dU9O9JVFYsWM1dzBndOQsy60OPhNxzlnPGq4c2t9jmgoki56VgBbsic66VzKTgYjZmqctM14W6IYthaBljVc3rOWmfQwx95nsb4jFESNjQddyKbAdiW1IbIPn-QGGg0FN0zluPfaLYoU0xWEjQnYdEXYgUrG-8peH7fMBx9xS6r-RDTyOCncItuXbQDXj3O5fk4_Vlt3rPNtu39eppk9mxasrKYq9qrVVTSVYoVdXacS2UdLIRCtGB1txVheB1ta8rVpT7SkmQ2gGKogEhl4Rf7toYhiGiM8foPyGeDWdmkmVaM8oykyxzkTUy6g9jfYKpdYrgu3_JxwuJ40snj9EMkyKLjY-jI9ME_w_9A86Nhj0 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_154703 crossref_primary_10_1016_j_mssp_2025_109774 crossref_primary_10_1002_adfm_202414449 crossref_primary_10_1007_s10562_025_05037_1 crossref_primary_10_1039_D4MH01315H crossref_primary_10_1016_j_ijhydene_2024_10_255 crossref_primary_10_1039_D4QM00842A crossref_primary_10_1002_aenm_202403464 crossref_primary_10_1002_EXP_20240010 crossref_primary_10_1016_j_jes_2025_03_053 |
| Cites_doi | 10.1016/j.jpowsour.2023.233174 10.1002/adfm.201704796 10.1016/j.matt.2020.07.021 10.1016/j.jelechem.2006.11.008 10.1016/j.cej.2022.134571 10.1038/s41467-021-23390-8 10.1021/acscatal.9b05611 10.1016/j.scitotenv.2022.160366 10.1016/j.cej.2022.135699 10.1016/j.electacta.2011.10.044 10.1007/s40843-021-1687-5 10.1039/D1TA10324E 10.1002/anie.202112870 10.1016/j.joule.2021.05.018 10.1021/jp047349j 10.1038/s41467-018-07678-w 10.1002/advs.202104636 10.1016/j.nanoen.2019.02.020 10.1016/j.ceramint.2019.06.255 10.1016/j.cej.2021.134210 10.1016/j.corsci.2019.01.018 10.1002/adfm.202108465 10.1016/j.ijhydene.2011.09.087 10.1016/S0013-4686(99)00135-8 10.1038/s41929-021-00715-w 10.1002/anie.202212341 10.1021/acsami.0c15687 10.1016/j.joule.2023.02.012 10.1149/1945-7111/ac1dcd 10.1039/D3QI01203D 10.1016/j.cej.2022.140908 10.1039/D0CY00919A 10.1016/j.apcatb.2020.118643 10.1016/j.joule.2021.05.005 10.1016/j.apcata.2014.04.043 10.1021/nl4028507 10.1021/acsami.1c18739 10.1021/acscatal.6b03246 10.1038/s41598-019-45401-x 10.1016/j.hydromet.2010.11.006 10.1002/adma.202004243 10.1021/jacs.3c07777 10.1021/jacs.8b11456 10.1016/j.jhazmat.2020.123018 10.1016/j.ijhydene.2023.03.360 10.1016/j.cej.2020.128340 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2024.152040 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2024_152040 S1385894724035277 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 ~HD |
| ID | FETCH-LOGICAL-c212t-54b79887d630477698f18273f3d27eefa881f642196b96045b673a38fae24da23 |
| ISSN | 1385-8947 |
| IngestDate | Tue Nov 18 22:10:12 EST 2025 Sat Nov 29 03:30:58 EST 2025 Sat Jul 27 15:41:38 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Durability Electrocatalytic activity Oxygen evolution reaction IrO2 Ta2O5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c212t-54b79887d630477698f18273f3d27eefa881f642196b96045b673a38fae24da23 |
| ORCID | 0000-0002-2669-8182 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2024_152040 crossref_citationtrail_10_1016_j_cej_2024_152040 elsevier_sciencedirect_doi_10_1016_j_cej_2024_152040 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhu, Zhang, Cheng (b0035) 2011; 105 Wang, Hao, Wang, Li, Ren, Sun, Hu, Li, Peng (b0070) 2023; 10 Vignolo-González, Laha, Jiménez-Solano, Oshima, Duppel, Schützendübe, Lotsch (b0075) 2020; 3 Baik, Cho, Cha, Cho, Jang, Pak (b0230) 2023; 575 Taie, Peng, Kulkarni, Zenyuk, Weber, Hagen, Danilovic (b0005) 2020; 12 Kiessling, Fornaciari, Anderson, Peng, Gerstmayr, Gerhardt, McKinney, Serov, Kim, Zulevi, Weber, Danilovic (b0015) 2021; 168 Shi, Li, Jiang, Wang, Wang, Li, Yang, Chu, Bai, Yang, Ni, Wang, Zhang, Jiang, Liu, Ge, Xing (b0125) 2022; 61 Li, Pan, Wu, He, Qin, Luo, Yang, Zeng (b0135) 2023; 48 Hao, Ye, Xu, Li, Huang, Peng, Li, Jin, Ma (b0160) 2021; 410 Gui, Chen, Chen, Song, Yu, Zhu, Hu, Liu, Zheng, Ze, You, Yeasmin (b0025) 2020; 399 Chen, Wu, Adler, Wang (b0180) 2021; 5 Yang, Yu, Ai, Yan, Duan, Chen, Li, Wang, Zhang, Huang, Chen, Zou (b0065) 2018; 9 Wang, Zhai, Xia, Wu, Zhang, Li, Ran, Gao, Zhang, Fan, Sun, Hou (b0190) 2021; 60 Qiao, Luo, Cai, Kao, Lan, Meng, Lu, Peng, Ma, Tan (b0250) 2023 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (b0240) 2004; 108 Zheng, Shang, Pei, Ma, Ye, Peng, Li (b0220) 2022; 433 Gao, Xu, Hung, Liu, Cai, Zeng, Jia, Chen, Xiao, Li, Huang, Liu (b0205) 2019; 141 Kang, Qiu, Hu, Zhong, Gao, Huang, Wan, Liu, Duan, Guo (b0170) 2021; 4 Joshi, Huang, Yadav, Hara, Yoshimura (b0150) 2020; 10 Oakton, Lebedev, Povia, Abbott, Fabbri, Fedorov, Nachtegaal, Copéret, Schmidt (b0105) 2017; 7 Liu, Zhang, Fang, Li, Sendeku, Wang, Wu, Li, Ge, Zhuang, Zhou, Kuang, Sun (b0245) 2023; 7 Kong, Zhang, Yin, Wang, Du, Chen, Zhang (b0100) 2012; 37 Shirvanian, van Berkel (b0010) 2020 Zhao, Luo, Chu, Peng, Liu, Wu, Liu, de Groot, Tan (b0060) 2019; 59 Hao, Wang, Zheng, Qiu, Xu, He, Lei, Zhang (b0095) 2020; 266 Watling (b0030) 2014; 146 Tang, Kong, Wang, Xu, Wang, Wu, Zheng (b0115) 2013; 13 Le Luu, Ngan (b0145) 2023; 860 Cheng, Shapter, Li, Gao (b0020) 2021; 57 Wu, Wang, Shi, Wang, Yang, Xiao, Ge, Xing, Liu (b0050) 2022; 10 Cheng, Pi, Shao, Huang (b0155) 2021; 64 Shi, Wang, Li, Wang, Wang, Li, Xu, Jiang, Liu, Xing, Ge (b0195) 2021; 5 She, Zhao, Ma, Chen, Sun, Pan (b0045) 2021; 32 Wu, Yao, Zhao, Li, Liu (b0175) 2022; 439 Xu, Lian, Wei, Li, Bondarchuk, Zhang, Yu, Araujo, Amorim, Wang, Li, Liu (b0055) 2020; 10 Monteseguro, Sans, Cuartero, Cova, Abrikosov, Olovsson, Popescu, Pascarelli, Garbarino, Jönsson, Irifune, Errandonea (b0210) 2019; 9 Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (b0085) 2017; 28 Xu, Liu, Li, Wang (b0120) 2012; 59 Huang, Pei, Ma, Ye, Peng, Li, Jin (b0215) 2022; 14 Hao, Hung, Zeng, Wang, Zhang, Kuo, Wang, Zhao, Zhang, Chen, Peng (b0200) 2023; 145 Liu, Song, Cheng, Wang, Saad, Deng, Shen, Huang, Cai (b0225) 2021; 431 Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0185) 2007; 607 Huang, Sheng, Ross, Han, Wang, Song, Jin (b0235) 2021; 12 Mehdipour, Tabaian, Firoozi (b0130) 2019; 45 Debecker, Farin, Gaigneaux, Sanchez, Sassoye (b0080) 2014; 481 Li, Wang, Shao, Huang (b0040) 2021; 33 Lassali, Boodts, Bulhões (b0110) 1999; 44 Fan, Jia, Wang, Fan, Wu, Zhao, Cui (b0165) 2023; 455 Zheng, Qin, Ma, Chen, Ning, Yang, Mao, Wang (b0090) 2022; 9 Xu, Haarberg, Seland, Sunde, Ratvik, Holmin, Gustavsson, Afvander, Zimmerman, Åkre (b0140) 2019; 150 Liu (10.1016/j.cej.2024.152040_b0225) 2021; 431 Baik (10.1016/j.cej.2024.152040_b0230) 2023; 575 Lim (10.1016/j.cej.2024.152040_b0085) 2017; 28 Hao (10.1016/j.cej.2024.152040_b0160) 2021; 410 Xu (10.1016/j.cej.2024.152040_b0055) 2020; 10 Wang (10.1016/j.cej.2024.152040_b0070) 2023; 10 Kong (10.1016/j.cej.2024.152040_b0100) 2012; 37 Wang (10.1016/j.cej.2024.152040_b0190) 2021; 60 Shi (10.1016/j.cej.2024.152040_b0125) 2022; 61 Kiessling (10.1016/j.cej.2024.152040_b0015) 2021; 168 Taie (10.1016/j.cej.2024.152040_b0005) 2020; 12 Gui (10.1016/j.cej.2024.152040_b0025) 2020; 399 Kang (10.1016/j.cej.2024.152040_b0170) 2021; 4 Li (10.1016/j.cej.2024.152040_b0040) 2021; 33 Shi (10.1016/j.cej.2024.152040_b0195) 2021; 5 Watling (10.1016/j.cej.2024.152040_b0030) 2014; 146 Cheng (10.1016/j.cej.2024.152040_b0020) 2021; 57 Rossmeisl (10.1016/j.cej.2024.152040_b0185) 2007; 607 Lassali (10.1016/j.cej.2024.152040_b0110) 1999; 44 Yang (10.1016/j.cej.2024.152040_b0065) 2018; 9 Vignolo-González (10.1016/j.cej.2024.152040_b0075) 2020; 3 Tang (10.1016/j.cej.2024.152040_b0115) 2013; 13 Oakton (10.1016/j.cej.2024.152040_b0105) 2017; 7 Li (10.1016/j.cej.2024.152040_b0135) 2023; 48 Cheng (10.1016/j.cej.2024.152040_b0155) 2021; 64 Qiao (10.1016/j.cej.2024.152040_b0250) 2023 Mehdipour (10.1016/j.cej.2024.152040_b0130) 2019; 45 Wu (10.1016/j.cej.2024.152040_b0050) 2022; 10 Fan (10.1016/j.cej.2024.152040_b0165) 2023; 455 Debecker (10.1016/j.cej.2024.152040_b0080) 2014; 481 Zhu (10.1016/j.cej.2024.152040_b0035) 2011; 105 Shirvanian (10.1016/j.cej.2024.152040_b0010) 2020 Chen (10.1016/j.cej.2024.152040_b0180) 2021; 5 Le Luu (10.1016/j.cej.2024.152040_b0145) 2023; 860 Zhao (10.1016/j.cej.2024.152040_b0060) 2019; 59 Xu (10.1016/j.cej.2024.152040_b0120) 2012; 59 Wu (10.1016/j.cej.2024.152040_b0175) 2022; 439 Joshi (10.1016/j.cej.2024.152040_b0150) 2020; 10 Liu (10.1016/j.cej.2024.152040_b0245) 2023; 7 Hao (10.1016/j.cej.2024.152040_b0095) 2020; 266 Huang (10.1016/j.cej.2024.152040_b0215) 2022; 14 Hao (10.1016/j.cej.2024.152040_b0200) 2023; 145 Zheng (10.1016/j.cej.2024.152040_b0090) 2022; 9 She (10.1016/j.cej.2024.152040_b0045) 2021; 32 Zheng (10.1016/j.cej.2024.152040_b0220) 2022; 433 Xu (10.1016/j.cej.2024.152040_b0140) 2019; 150 Huang (10.1016/j.cej.2024.152040_b0235) 2021; 12 Nørskov (10.1016/j.cej.2024.152040_b0240) 2004; 108 Monteseguro (10.1016/j.cej.2024.152040_b0210) 2019; 9 Gao (10.1016/j.cej.2024.152040_b0205) 2019; 141 |
| References_xml | – volume: 61 start-page: e202212341 year: 2022 end-page: e202212352 ident: b0125 article-title: Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb publication-title: Angew. Chem.International Edition – volume: 860 start-page: 160366 year: 2023 end-page: 160378 ident: b0145 article-title: Fabrication of high performance Ti/SnO publication-title: Science of the Total Enviroment – volume: 13 start-page: 5350 year: 2013 end-page: 5355 ident: b0115 article-title: Photoelectrochemical detection of glutathione by IrO publication-title: Nano Lett. – volume: 57 start-page: 451 year: 2021 end-page: 468 ident: b0020 article-title: Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy publication-title: Chemistry – volume: 44 start-page: 4203 year: 1999 end-page: 4216 ident: b0110 article-title: Charging processes and electrocatalytic properties of IrO publication-title: Electrochim. Acta – volume: 10 start-page: 6015 year: 2023 end-page: 6022 ident: b0070 article-title: Charge-enriched RuO publication-title: Inorg. Chem. Front. – volume: 10 start-page: 13170 year: 2022 end-page: 13189 ident: b0050 article-title: Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis publication-title: J. Mater. Chem. A – start-page: 106704 year: 2020 end-page: 106722 ident: b0010 article-title: Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review0 publication-title: ElectrochemistryCommunications 114 – start-page: e2305479 year: 2023 end-page: e2305488 ident: b0250 article-title: Constructing Nanoporous Ir/Ta publication-title: Small – volume: 168 start-page: 084512 year: 2021 end-page: 084521 ident: b0015 article-title: Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte publication-title: J. Electrochem. Soc. – volume: 59 start-page: 105 year: 2012 end-page: 112 ident: b0120 article-title: The electrocatalytic properties of an IrO publication-title: Electrochim. Acta – volume: 575 start-page: 233174 year: 2023 end-page: 233184 ident: b0230 article-title: Electron-rich Ir nanostructure supported on mesoporous Ta publication-title: J. Power Sources – volume: 28 start-page: 1704796 year: 2017 end-page: 1704803 ident: b0085 article-title: Ultrathin IrO Nanoneedles for Electrochemical Water Oxidation publication-title: Adv. Funct. Mater. – volume: 37 start-page: 59 year: 2012 end-page: 67 ident: b0100 article-title: Electrochemical studies of Pt/Ir–IrO publication-title: Int. J. Hydrogen Energy – volume: 439 start-page: 135699 year: 2022 end-page: 135708 ident: b0175 article-title: La-RuO publication-title: Chem. Eng. J. – volume: 9 start-page: 5236 year: 2018 end-page: 5245 ident: b0065 article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO publication-title: Nat. Commun. – volume: 12 start-page: 52701 year: 2020 end-page: 52712 ident: b0005 article-title: Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3571 year: 2020 end-page: 3579 ident: b0055 article-title: Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media publication-title: ACS Catal. – volume: 9 start-page: 2104636 year: 2022 end-page: 2104649 ident: b0090 article-title: Strong Oxide-Support Interaction over IrO2/V2O5 for Efficient pH-Universal Water Splitting publication-title: Adv. Sci. – volume: 10 start-page: 6599 year: 2020 end-page: 6610 ident: b0150 article-title: Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction publication-title: Cat. Sci. Technol. – volume: 141 start-page: 3014 year: 2019 end-page: 3023 ident: b0205 article-title: Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation publication-title: Journal of the American Chemical Society – volume: 399 start-page: 123018 year: 2020 end-page: 123056 ident: b0025 article-title: Preparation and characterization of ZnO/PEG-Co(II)-PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol publication-title: J. Hazard. Mater. – volume: 5 start-page: 1704 year: 2021 end-page: 1731 ident: b0180 article-title: Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design publication-title: Joule – volume: 48 start-page: 26021 year: 2023 end-page: 26031 ident: b0135 article-title: Highly active and stable IrO publication-title: Int. J. Hydrogen Energy – volume: 146 start-page: 96 year: 2014 end-page: 110 ident: b0030 article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 2 publication-title: Review of Acidic Chloride Process Options, Hydrometallurgy – volume: 3 start-page: 464 year: 2020 end-page: 486 ident: b0075 article-title: Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO publication-title: Matter – volume: 59 start-page: 146 year: 2019 end-page: 153 ident: b0060 article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media publication-title: Nano Energy – volume: 266 start-page: 118643 year: 2020 end-page: 118669 ident: b0095 article-title: Tuning electronic correlations of ultra-small IrO publication-title: Appl Catal B – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: b0185 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. – volume: 4 start-page: 1050 year: 2021 end-page: 1058 ident: b0170 article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation publication-title: Nat. Catal. – volume: 60 start-page: 27126 year: 2021 end-page: 27134 ident: b0190 article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2164 year: 2021 end-page: 2176 ident: b0195 article-title: Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis publication-title: Joule – volume: 9 start-page: 8940 year: 2019 end-page: 8949 ident: b0210 article-title: Phase stability and electronic structure of iridium metal at the megabar range publication-title: Sci. Rep. – volume: 45 start-page: 19971 year: 2019 end-page: 19980 ident: b0130 article-title: Effect of IrO publication-title: Ceram. Int. – volume: 481 start-page: 11 year: 2014 end-page: 18 ident: b0080 article-title: Total oxidation of propane with a nano-RuO publication-title: Appl. Catal. A – volume: 7 start-page: 2346 year: 2017 end-page: 2352 ident: b0105 article-title: IrO publication-title: ACS Catal. – volume: 410 start-page: 128340 year: 2021 end-page: 128350 ident: b0160 article-title: A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites publication-title: Chemical Engineering Journal – volume: 32 start-page: 2108465 year: 2021 end-page: 2108476 ident: b0045 article-title: On the Durability of Iridium-Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment publication-title: Adv. Funct. Mater. – volume: 7 start-page: 558 year: 2023 end-page: 573 ident: b0245 article-title: Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media publication-title: Joule – volume: 150 start-page: 76 year: 2019 end-page: 90 ident: b0140 article-title: The durability of the thermally decomposed IrO publication-title: Corros. Sci. – volume: 431 start-page: 134210 year: 2021 end-page: 134220 ident: b0225 article-title: Mesoporous IrNiTa Metal Glass Ribbon as a Superior Self-standing Bifunctional Catalyst for Water Electrolysis publication-title: Chemical Engineering Journal – volume: 14 start-page: 784 year: 2022 end-page: 793 ident: b0215 article-title: Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction publication-title: ACS Applied Materials Interfaces – volume: 108 start-page: 17886 year: 2004 end-page: 17893 ident: b0240 article-title: Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode publication-title: J. Phys. Chem. B – volume: 105 start-page: 304 year: 2011 end-page: 313 ident: b0035 article-title: A literature review of titanium solvent extraction in chloride media publication-title: Hydrometall. – volume: 12 start-page: 3036 year: 2021 end-page: 3047 ident: b0235 article-title: Modifying redox properties and local bonding of Co publication-title: Nat. Commun. – volume: 455 start-page: 140908 year: 2023 end-page: 140917 ident: b0165 article-title: High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting publication-title: Chem. Eng. J. – volume: 433 start-page: 134571 year: 2022 end-page: 134579 ident: b0220 article-title: Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities publication-title: Chem. Eng. J. – volume: 33 start-page: 2004243 year: 2021 end-page: 2004267 ident: b0040 article-title: Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction publication-title: Adv. Mater. – volume: 64 start-page: 2958 year: 2021 end-page: 2966 ident: b0155 article-title: Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction publication-title: Sci. China Mater. – volume: 145 start-page: 23659 year: 2023 end-page: 23669 ident: b0200 article-title: Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics publication-title: J. Am. Chem. Soc. – volume: 575 start-page: 233174 year: 2023 ident: 10.1016/j.cej.2024.152040_b0230 article-title: Electron-rich Ir nanostructure supported on mesoporous Ta2O5 for enhanced activity and stability of oxygen evolution reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.233174 – volume: 28 start-page: 1704796 issue: 4 year: 2017 ident: 10.1016/j.cej.2024.152040_b0085 article-title: Ultrathin IrO Nanoneedles for Electrochemical Water Oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704796 – volume: 3 start-page: 464 issue: 2 year: 2020 ident: 10.1016/j.cej.2024.152040_b0075 article-title: Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark publication-title: Matter doi: 10.1016/j.matt.2020.07.021 – volume: 607 start-page: 83 issue: 1–2 year: 2007 ident: 10.1016/j.cej.2024.152040_b0185 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 433 start-page: 134571 year: 2022 ident: 10.1016/j.cej.2024.152040_b0220 article-title: Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134571 – volume: 12 start-page: 3036 issue: 1 year: 2021 ident: 10.1016/j.cej.2024.152040_b0235 article-title: Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid publication-title: Nat. Commun. doi: 10.1038/s41467-021-23390-8 – volume: 10 start-page: 3571 issue: 6 year: 2020 ident: 10.1016/j.cej.2024.152040_b0055 article-title: Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media publication-title: ACS Catal. doi: 10.1021/acscatal.9b05611 – volume: 860 start-page: 160366 year: 2023 ident: 10.1016/j.cej.2024.152040_b0145 article-title: Fabrication of high performance Ti/SnO2-Nb2O5 electrodes for electrochemical textile wastewater treatment publication-title: Science of the Total Enviroment doi: 10.1016/j.scitotenv.2022.160366 – volume: 439 start-page: 135699 year: 2022 ident: 10.1016/j.cej.2024.152040_b0175 article-title: La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135699 – volume: 59 start-page: 105 year: 2012 ident: 10.1016/j.cej.2024.152040_b0120 article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.10.044 – volume: 64 start-page: 2958 issue: 12 year: 2021 ident: 10.1016/j.cej.2024.152040_b0155 article-title: Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction publication-title: Sci. China Mater. doi: 10.1007/s40843-021-1687-5 – volume: 10 start-page: 13170 issue: 25 year: 2022 ident: 10.1016/j.cej.2024.152040_b0050 article-title: Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10324E – volume: 60 start-page: 27126 issue: 52 year: 2021 ident: 10.1016/j.cej.2024.152040_b0190 article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112870 – volume: 5 start-page: 2164 issue: 8 year: 2021 ident: 10.1016/j.cej.2024.152040_b0195 article-title: Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis publication-title: Joule doi: 10.1016/j.joule.2021.05.018 – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.cej.2024.152040_b0240 article-title: Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – start-page: 106704 year: 2020 ident: 10.1016/j.cej.2024.152040_b0010 article-title: Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review0 publication-title: ElectrochemistryCommunications 114 – volume: 9 start-page: 5236 issue: 1 year: 2018 ident: 10.1016/j.cej.2024.152040_b0065 article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers publication-title: Nat. Commun. doi: 10.1038/s41467-018-07678-w – volume: 9 start-page: 2104636 issue: 11 year: 2022 ident: 10.1016/j.cej.2024.152040_b0090 article-title: Strong Oxide-Support Interaction over IrO2/V2O5 for Efficient pH-Universal Water Splitting publication-title: Adv. Sci. doi: 10.1002/advs.202104636 – volume: 59 start-page: 146 year: 2019 ident: 10.1016/j.cej.2024.152040_b0060 article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.020 – volume: 45 start-page: 19971 issue: 16 year: 2019 ident: 10.1016/j.cej.2024.152040_b0130 article-title: Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2–Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.255 – volume: 431 start-page: 134210 year: 2021 ident: 10.1016/j.cej.2024.152040_b0225 article-title: Mesoporous IrNiTa Metal Glass Ribbon as a Superior Self-standing Bifunctional Catalyst for Water Electrolysis publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.134210 – start-page: e2305479 year: 2023 ident: 10.1016/j.cej.2024.152040_b0250 article-title: Constructing Nanoporous Ir/Ta2O5 Interfaces on Metallic Glass for Durable Acidic Water Oxidation publication-title: Small – volume: 150 start-page: 76 year: 2019 ident: 10.1016/j.cej.2024.152040_b0140 article-title: The durability of the thermally decomposed IrO2-Ta2O5 coated titanium anode in a sulfate solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.01.018 – volume: 32 start-page: 2108465 issue: 5 year: 2021 ident: 10.1016/j.cej.2024.152040_b0045 article-title: On the Durability of Iridium-Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108465 – volume: 37 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.cej.2024.152040_b0100 article-title: Electrochemical studies of Pt/Ir–IrO2 electrocatalyst as a bifunctional oxygen electrode publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.087 – volume: 44 start-page: 4203 issue: 24 year: 1999 ident: 10.1016/j.cej.2024.152040_b0110 article-title: Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00135-8 – volume: 4 start-page: 1050 issue: 12 year: 2021 ident: 10.1016/j.cej.2024.152040_b0170 article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-021-00715-w – volume: 61 start-page: e202212341 issue: 52 year: 2022 ident: 10.1016/j.cej.2024.152040_b0125 article-title: Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb2O5-x Catalyst/Support Interfaces publication-title: Angew. Chem.International Edition doi: 10.1002/anie.202212341 – volume: 12 start-page: 52701 issue: 47 year: 2020 ident: 10.1016/j.cej.2024.152040_b0005 article-title: Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15687 – volume: 7 start-page: 558 issue: 3 year: 2023 ident: 10.1016/j.cej.2024.152040_b0245 article-title: Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media publication-title: Joule doi: 10.1016/j.joule.2023.02.012 – volume: 168 start-page: 084512 issue: 8 year: 2021 ident: 10.1016/j.cej.2024.152040_b0015 article-title: Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac1dcd – volume: 10 start-page: 6015 issue: 20 year: 2023 ident: 10.1016/j.cej.2024.152040_b0070 article-title: Charge-enriched RuO2 nanoparticles decorating TiO2 with Ti defects to promote oxygen evolution reaction in acidic media publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI01203D – volume: 455 start-page: 140908 year: 2023 ident: 10.1016/j.cej.2024.152040_b0165 article-title: High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140908 – volume: 10 start-page: 6599 issue: 19 year: 2020 ident: 10.1016/j.cej.2024.152040_b0150 article-title: Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction publication-title: Cat. Sci. Technol. doi: 10.1039/D0CY00919A – volume: 266 start-page: 118643 year: 2020 ident: 10.1016/j.cej.2024.152040_b0095 article-title: Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.118643 – volume: 5 start-page: 1704 issue: 7 year: 2021 ident: 10.1016/j.cej.2024.152040_b0180 article-title: Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design publication-title: Joule doi: 10.1016/j.joule.2021.05.005 – volume: 481 start-page: 11 year: 2014 ident: 10.1016/j.cej.2024.152040_b0080 article-title: Total oxidation of propane with a nano-RuO2/TiO2 catalyst publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2014.04.043 – volume: 13 start-page: 5350 issue: 11 year: 2013 ident: 10.1016/j.cej.2024.152040_b0115 article-title: Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays publication-title: Nano Lett. doi: 10.1021/nl4028507 – volume: 14 start-page: 784 issue: 1 year: 2022 ident: 10.1016/j.cej.2024.152040_b0215 article-title: Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction publication-title: ACS Applied Materials Interfaces doi: 10.1021/acsami.1c18739 – volume: 7 start-page: 2346 issue: 4 year: 2017 ident: 10.1016/j.cej.2024.152040_b0105 article-title: IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b03246 – volume: 9 start-page: 8940 issue: 1 year: 2019 ident: 10.1016/j.cej.2024.152040_b0210 article-title: Phase stability and electronic structure of iridium metal at the megabar range publication-title: Sci. Rep. doi: 10.1038/s41598-019-45401-x – volume: 105 start-page: 304 issue: 3–4 year: 2011 ident: 10.1016/j.cej.2024.152040_b0035 article-title: A literature review of titanium solvent extraction in chloride media publication-title: Hydrometall. doi: 10.1016/j.hydromet.2010.11.006 – volume: 33 start-page: 2004243 issue: 50 year: 2021 ident: 10.1016/j.cej.2024.152040_b0040 article-title: Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction publication-title: Adv. Mater. doi: 10.1002/adma.202004243 – volume: 145 start-page: 23659 issue: 43 year: 2023 ident: 10.1016/j.cej.2024.152040_b0200 article-title: Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c07777 – volume: 141 start-page: 3014 issue: 7 year: 2019 ident: 10.1016/j.cej.2024.152040_b0205 article-title: Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.8b11456 – volume: 399 start-page: 123018 year: 2020 ident: 10.1016/j.cej.2024.152040_b0025 article-title: Preparation and characterization of ZnO/PEG-Co(II)-PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123018 – volume: 146 start-page: 96 year: 2014 ident: 10.1016/j.cej.2024.152040_b0030 article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 2 publication-title: Review of Acidic Chloride Process Options, Hydrometallurgy – volume: 57 start-page: 451 year: 2021 ident: 10.1016/j.cej.2024.152040_b0020 article-title: Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy publication-title: Chemistry – volume: 48 start-page: 26021 issue: 67 year: 2023 ident: 10.1016/j.cej.2024.152040_b0135 article-title: Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.03.360 – volume: 410 start-page: 128340 year: 2021 ident: 10.1016/j.cej.2024.152040_b0160 article-title: A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.128340 |
| SSID | ssj0006919 |
| Score | 2.4414828 |
| Snippet | [Display omitted]
•The incorporation of boron species dramatically boosts the intrinsic activity of high-stabilized IrO2-Ta2O5.•The incorporation of boron... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 152040 |
| SubjectTerms | Durability Electrocatalytic activity IrO2 Oxygen evolution reaction Ta2O5 |
| Title | Boron-incorporated IrO2-Ta2O5 coating as an efficient electrocatalyst for acidic oxygen evolution reaction |
| URI | https://dx.doi.org/10.1016/j.cej.2024.152040 |
| Volume | 491 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieckHTlSuUudh-7igRbscdkEtUjlFduKwiVbJqk1Lyz_iXzKOnaS0gACJSxRN6zia-eKMJzPfIPRSqtSEN0IC2x9BgsxTRHEWEC6kp6UeByrKmmYT7Pycz2bi_WDwra2FWV2xsuTrtbj-r6YGGRjblM7-hbm7i4IAzsHocASzw_GPDP_acBIQQ7pgOYrBozybX1AylfQiHCaVbBKdpeFmNtkceVMROXTtcJpozmZR2-TKJE_zZFitN59NL4CVu-0h-JlJZ8-W5aAlHtA9wWFHS2HahkiT_mPDp5Mvef3VVhm7iISItiISp0sXw_4AJ6rqQ9utfHIpqyLX_Q_ayj8t9Trv13ornOXlZukeARfdoEGXCetCbntlN80q7fMQ0GSpOkfayjjziU_HPyztge0EtveasBGLYpToYmRmNV2gPEsbtcO-PTFzmakMb2FIGbuBDikLBSygh8dnJ7N33Ws_Ek0Xme7e2k_oTTLhzkQ_d4K2HJvpXXTH7UjwsUXSPTTQ5X10e4un8gEq9jGFe0xhhyksF1iWuMMU3sEUBkxhiylsMYU7TOEWUw_Rx7cn0zenxDXpIAkouyZhoAzlHUsj8wGXRYJnsGVlfuanlGmdSc7HmammFpEyREChipgvfZ5JTYNUUv8ROiirUj9GWKWhSsZ-prIAvHTY6mpwblPpUSVSxSN2hLxWa3HiGOxNI5WruE1VLGJQdGwUHVtFH6FX3ZBrS9_yuz8HrSli539avzIG3Px62JN_G_YU3eoB_wwd1POlfo5uJqs6X8xfOHR9B4jqqQw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron-incorporated+IrO2-Ta2O5+coating+as+an+efficient+electrocatalyst+for+acidic+oxygen+evolution+reaction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Huang%2C+Quanbo&rft.au=Zhuang%2C+Shaojie&rft.au=Zheng%2C+Yuexi&rft.au=Peng%2C+Xinyuan&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=491&rft_id=info:doi/10.1016%2Fj.cej.2024.152040&rft.externalDocID=S1385894724035277 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |