Proof of Tomaszewski's conjecture on randomly signed sums
We prove the following conjecture, due to Tomaszewski (1986): Let X=∑i=1naixi, where ∑iai2=1 and each xi is a uniformly random sign. Then Pr[|X|≤1]≥1/2. Our main novel tools are local concentration inequalities and an improved Berry-Esseen inequality for Rademacher sums.
Uloženo v:
| Vydáno v: | Advances in mathematics (New York. 1965) Ročník 407; s. 108558 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
08.10.2022
|
| Témata: | |
| ISSN: | 0001-8708, 1090-2082 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove the following conjecture, due to Tomaszewski (1986): Let X=∑i=1naixi, where ∑iai2=1 and each xi is a uniformly random sign. Then Pr[|X|≤1]≥1/2.
Our main novel tools are local concentration inequalities and an improved Berry-Esseen inequality for Rademacher sums. |
|---|---|
| ISSN: | 0001-8708 1090-2082 |
| DOI: | 10.1016/j.aim.2022.108558 |