A method for the automated configuration of anytime portfolios of algorithms

Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 329; H. 2; S. 577 - 590
Hauptverfasser: Schede, Elias, Tierney, Kevin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2026
Schlagworte:
ISSN:0377-2217
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they can be stopped at any time during their execution and provide a feasible solution. Setting the parameters of anytime algorithms is difficult, as the parameters ought to provide robust performance across varying execution times. Traditional algorithm configuration methods address this challenge by finding a one-size-fits-all parameter configuration, however finding a portfolio of configurations, each targeted to a different runtime, can lead to better overall performance. We introduce a novel algorithm configuration method for configuring anytime algorithms that produces viable configuration portfolios that assign different configurations to different runtimes. Our proposed method harnesses an early termination mechanism for unpromising configurations using a cost-sensitive machine learning approach. Furthermore, it uses two novel MIP formulations to discard configurations and to create the configuration portfolio, respectively. •Introduces a new configurator to improve anytime performance of algorithms.•Creates configuration portfolios, assigning configurations to algorithm cutoffs.•Capping poor performing configurations early using a cost sensitive learned model.
AbstractList Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they can be stopped at any time during their execution and provide a feasible solution. Setting the parameters of anytime algorithms is difficult, as the parameters ought to provide robust performance across varying execution times. Traditional algorithm configuration methods address this challenge by finding a one-size-fits-all parameter configuration, however finding a portfolio of configurations, each targeted to a different runtime, can lead to better overall performance. We introduce a novel algorithm configuration method for configuring anytime algorithms that produces viable configuration portfolios that assign different configurations to different runtimes. Our proposed method harnesses an early termination mechanism for unpromising configurations using a cost-sensitive machine learning approach. Furthermore, it uses two novel MIP formulations to discard configurations and to create the configuration portfolio, respectively. •Introduces a new configurator to improve anytime performance of algorithms.•Creates configuration portfolios, assigning configurations to algorithm cutoffs.•Capping poor performing configurations early using a cost sensitive learned model.
Author Schede, Elias
Tierney, Kevin
Author_xml – sequence: 1
  givenname: Elias
  surname: Schede
  fullname: Schede, Elias
  email: elias.schede@uni-bielefeld.de
– sequence: 2
  givenname: Kevin
  orcidid: 0000-0002-5931-4907
  surname: Tierney
  fullname: Tierney, Kevin
BookMark eNp9kMtqwzAURLVIoUnaH-hKP2BXkmXLgW5C6AsM3bRrIUtXiUzsGySlkL9v0nTd1cDAGYazILMJJyDkgbOSM948DiUMGEvBRF0yVTIhZ2TOKqUKIbi6JYuUBsYYr3k9J92ajpB36KjHSPMOqDlmHE0GRy1OPmyP0eSAE0VPzXTKYQR6wJg97gOm33a_xRjybkx35MabfYL7v1ySr5fnz81b0X28vm_WXWEFF7JoVr2UfuWrunUtb1e1N1z2tvJGMGiMMnWjlFStM71pa-N7JWSlrAPllZOir5ZEXHdtxJQieH2IYTTxpDnTFwd60BcH-uJAM6XPDs7Q0xWC87PvAFEnG2Cy4EIEm7XD8B_-A08Saoo
Cites_doi 10.1016/j.ejor.2015.08.018
10.1504/IJKESDP.2011.039875
10.1287/opre.1120.1048
10.1162/EVCO_a_00157
10.1016/j.orp.2016.09.002
10.1016/j.ejor.2020.07.059
10.1145/2001858.2002006
10.1109/4235.996017
10.1016/j.eswa.2015.04.042
10.1023/A:1010933404324
10.1613/jair.1.13676
10.1109/TCYB.2015.2456187
10.1016/j.ejor.2014.10.062
10.1016/j.ejor.2013.10.043
10.1109/TEVC.2022.3210897
10.1016/j.ejor.2006.08.008
10.1162/EVCO_a_00009
10.1007/978-3-642-02538-9_13
10.1186/s12864-019-6413-7
10.1016/j.ejor.2024.02.003
10.1613/jair.2861
10.1016/j.cor.2021.105615
10.1109/TEVC.2022.3159087
10.1145/1570256.1570301
10.1145/3377930.3390185
10.1145/3520304.3528998
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejor.2025.07.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EndPage 590
ExternalDocumentID 10_1016_j_ejor_2025_07_024
S0377221725005491
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFO
ACGFS
ACIWK
ACLOT
ACNCT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
~HD
1OL
29G
41~
9DU
AAAKG
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
LY1
M41
R2-
VH1
WUQ
ID FETCH-LOGICAL-c2124-69b44f9f358d81895fa14bc3fa20e6a7a5677478daba85afb72437cde7f7d42b3
ISSN 0377-2217
IngestDate Thu Nov 27 01:06:33 EST 2025
Sat Nov 29 17:02:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Integer programming
Evolutionary computations
Combinatorial optimization
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2124-69b44f9f358d81895fa14bc3fa20e6a7a5677478daba85afb72437cde7f7d42b3
ORCID 0000-0002-5931-4907
OpenAccessLink https://dx.doi.org/10.1016/j.ejor.2025.07.024
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ejor_2025_07_024
elsevier_sciencedirect_doi_10_1016_j_ejor_2025_07_024
PublicationCentury 2000
PublicationDate 2026-03-01
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References De Souza, Ritt, López-Ibáñez (b20) 2022; 139
Lindauer, Eggensperger, Feurer, Biedenkapp, Deng, Benjamins, Sass, Hutter (b42) 2021
Kuhn, Fonseca, Paquete, Ruzika, Duarte, Figueira (b41) 2016; 24
Hutter, Hoos, Leyton-Brown (b32) 2011
(pp. 733–739).
Berg, Demirović, Stuckey (b9) 2019
Kemminer, Lange, Kempkes, Tierney, Weiß (b38) 2024; vol. 5
Branke, J., & Elomari, J. (2011). Simultaneous tuning of metaheuristic parameters for various computing budgets. In
Ansótegui, Sellmann, Tierney (b3) 2009
Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In
Chicco, Jurman (b19) 2020; 21
Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In
Baker, Gupta, Raskar, Naik (b7) 2017
Birattari, Stützle, Paquete, Varrentrapp (b11) 2002; vol. 2
Wolsey, Nemhauser (b58) 1999
Bacchus, Berg, Järvisalo, Martins (b4) 2020
Hansen, Auger, Brockhoff, Tušar (b31) 2022; 26
Nadel (b49) 2018
.
Weiss, Tierney (b57) 2023
Zilberstein (b63) 1996; 17
Gurobi Optimization, LLC (b30) 2022
Zhang, Georgiopoulos, Anagnostopoulos (b62) 2015
Breiman (b16) 2001; 45
Radulescu, López-Ibáñez, Stützle (b52) 2013
Birattari, Yuan, Balaprakash, Stützle (b12) 2010
López-Ibánez, Dubois-Lacoste, Leslie, Birattari, Stützle (b45) 2016; 3
Jesus, A. D., Liefooghe, A., Derbel, B., & Paquete, L. (2020). Algorithm selection of anytime algorithms. In
Van Veldhuizen, Lamont (b55) 1998
Bahnsen, Aouada, Ottersten (b6) 2015; 42
Hutter, López-Ibánez, Fawcett, Lindauer, Hoos, Leyton-Brown, Stützle (b34) 2014
Domhan, Springenberg, Hutter (b25) 2015
Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In
Dean, Boddy (b21) 1988; vol. 88
López-Ibáñez, Liao, Stützle (b43) 2012
Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2017). Learning Curve Prediction with Bayesian Neural Networks. In
Diaz, López-Ibáñez (b24) 2021; 289
Zhang, Georgiopoulos, Anagnostopoulos (b60) 2013
Pérez Cáceres, nez, Hoos, Stützle (b51) 2017; vol. 10556
Chiarandini (b18) 2005
Louppe, Geurts (b46) 2012
Merschformann (b48) 2024
López-Ibáñez, Stützle (b44) 2014; 235
Zitzler, Thiele (b64) 1998
Zhang, Georgiopoulos, Anagnostopoulos (b61) 2015; 46
Di Liberto, Kadioglu, Leo, Malitsky (b23) 2016; 248
Graham, Leyton-Brown, Roughgarden (b28) 2023
Balaprakash, Birattari, Stützle (b8) 2007
Beume, Naujoks, Emmerich (b10) 2007; 181
Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier, Tierney (b54) 2022; 75
Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann (b37) 2011
Bader, Zitzler (b5) 2011; 19
Bossek, Kerschke, Trautmann (b14) 2020
Dubois-Lacoste, López-Ibáñez, Stützle (b27) 2015; 243
Graham, Leyton-Brown, Roughgarden (b29) 2024; 36
Ye, Doerr, Wang, Bäck (b59) 2022; 26
Chen, He, Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano, Zhou (b17) 2015; vol. 1
Nguyen, Cooper, Kamei (b50) 2011; 3
Blot, Hoos, Jourdan, Kessaci-Marmion, Trautmann (b13) 2016
(pp. 850–858).
Martin-Iradi, Pacino, Ropke (b47) 2024; 316
Deb, Pratap, Agarwal, Meyarivan (b22) 2002; 6
(pp. 2197–2200).
Vidal, Crainic, Gendreau, Lahrichi, Rei (b56) 2012; 60
(pp. 356–359).
IBM (b35) 2022
Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K. (2015). Model-Based Genetic Algorithms for Algorithm Configuration. In
Ansótegui, Pon, Sellmann, Tierney (b2) 2021; vol. 12831
(pp. 263–264).
Hutter, Hoos, Leyton-Brown, Stützle (b33) 2009; 36
Graham (10.1016/j.ejor.2025.07.024_b29) 2024; 36
Zilberstein (10.1016/j.ejor.2025.07.024_b63) 1996; 17
López-Ibáñez (10.1016/j.ejor.2025.07.024_b44) 2014; 235
Domhan (10.1016/j.ejor.2025.07.024_b25) 2015
Nguyen (10.1016/j.ejor.2025.07.024_b50) 2011; 3
Zhang (10.1016/j.ejor.2025.07.024_b61) 2015; 46
Beume (10.1016/j.ejor.2025.07.024_b10) 2007; 181
Graham (10.1016/j.ejor.2025.07.024_b28) 2023
Hutter (10.1016/j.ejor.2025.07.024_b33) 2009; 36
10.1016/j.ejor.2025.07.024_b53
Hutter (10.1016/j.ejor.2025.07.024_b34) 2014
Zhang (10.1016/j.ejor.2025.07.024_b60) 2013
Blot (10.1016/j.ejor.2025.07.024_b13) 2016
Schede (10.1016/j.ejor.2025.07.024_b54) 2022; 75
Bacchus (10.1016/j.ejor.2025.07.024_b4) 2020
Balaprakash (10.1016/j.ejor.2025.07.024_b8) 2007
Birattari (10.1016/j.ejor.2025.07.024_b11) 2002; vol. 2
Martin-Iradi (10.1016/j.ejor.2025.07.024_b47) 2024; 316
10.1016/j.ejor.2025.07.024_b15
Breiman (10.1016/j.ejor.2025.07.024_b16) 2001; 45
Chen (10.1016/j.ejor.2025.07.024_b17) 2015; vol. 1
Bahnsen (10.1016/j.ejor.2025.07.024_b6) 2015; 42
Bossek (10.1016/j.ejor.2025.07.024_b14) 2020
Pérez Cáceres (10.1016/j.ejor.2025.07.024_b51) 2017; vol. 10556
IBM (10.1016/j.ejor.2025.07.024_b35) 2022
Berg (10.1016/j.ejor.2025.07.024_b9) 2019
Deb (10.1016/j.ejor.2025.07.024_b22) 2002; 6
Kadioglu (10.1016/j.ejor.2025.07.024_b37) 2011
Radulescu (10.1016/j.ejor.2025.07.024_b52) 2013
Wolsey (10.1016/j.ejor.2025.07.024_b58) 1999
10.1016/j.ejor.2025.07.024_b26
Gurobi Optimization, LLC (10.1016/j.ejor.2025.07.024_b30) 2022
Kemminer (10.1016/j.ejor.2025.07.024_b38) 2024; vol. 5
Kuhn (10.1016/j.ejor.2025.07.024_b41) 2016; 24
Di Liberto (10.1016/j.ejor.2025.07.024_b23) 2016; 248
Lindauer (10.1016/j.ejor.2025.07.024_b42) 2021
Bader (10.1016/j.ejor.2025.07.024_b5) 2011; 19
Chiarandini (10.1016/j.ejor.2025.07.024_b18) 2005
Baker (10.1016/j.ejor.2025.07.024_b7) 2017
Zhang (10.1016/j.ejor.2025.07.024_b62) 2015
Birattari (10.1016/j.ejor.2025.07.024_b12) 2010
López-Ibáñez (10.1016/j.ejor.2025.07.024_b43) 2012
10.1016/j.ejor.2025.07.024_b1
Weiss (10.1016/j.ejor.2025.07.024_b57) 2023
Diaz (10.1016/j.ejor.2025.07.024_b24) 2021; 289
Nadel (10.1016/j.ejor.2025.07.024_b49) 2018
10.1016/j.ejor.2025.07.024_b39
Ansótegui (10.1016/j.ejor.2025.07.024_b2) 2021; vol. 12831
Ansótegui (10.1016/j.ejor.2025.07.024_b3) 2009
10.1016/j.ejor.2025.07.024_b36
Ye (10.1016/j.ejor.2025.07.024_b59) 2022; 26
Zitzler (10.1016/j.ejor.2025.07.024_b64) 1998
López-Ibánez (10.1016/j.ejor.2025.07.024_b45) 2016; 3
Dubois-Lacoste (10.1016/j.ejor.2025.07.024_b27) 2015; 243
Van Veldhuizen (10.1016/j.ejor.2025.07.024_b55) 1998
Hansen (10.1016/j.ejor.2025.07.024_b31) 2022; 26
Vidal (10.1016/j.ejor.2025.07.024_b56) 2012; 60
10.1016/j.ejor.2025.07.024_b40
Louppe (10.1016/j.ejor.2025.07.024_b46) 2012
Dean (10.1016/j.ejor.2025.07.024_b21) 1988; vol. 88
Merschformann (10.1016/j.ejor.2025.07.024_b48) 2024
Chicco (10.1016/j.ejor.2025.07.024_b19) 2020; 21
De Souza (10.1016/j.ejor.2025.07.024_b20) 2022; 139
Hutter (10.1016/j.ejor.2025.07.024_b32) 2011
References_xml – volume: 243
  start-page: 369
  year: 2015
  end-page: 385
  ident: b27
  article-title: Anytime Pareto local search
  publication-title: European Journal of Operational Research
– volume: 26
  start-page: 1526
  year: 2022
  end-page: 1538
  ident: b59
  article-title: Automated configuration of genetic algorithms by tuning for anytime performance
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 357
  year: 2012
  end-page: 366
  ident: b43
  article-title: On the anytime behavior of IPOP-CMA-ES
  publication-title: Parallel problem solving from nature-PPSN XII: 12th international conference, Taormina, Italy, September 1-5, 2012, proceedings, part i 12
– volume: 235
  start-page: 569
  year: 2014
  end-page: 582
  ident: b44
  article-title: Automatically improving the anytime behaviour of optimisation algorithms
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2022
  ident: b30
  article-title: Gurobi optimizer reference manual
– start-page: 454
  year: 2011
  end-page: 469
  ident: b37
  article-title: Algorithm selection and scheduling
  publication-title: Principles and practice of constraint programming, CP
– volume: vol. 88
  start-page: 49
  year: 1988
  end-page: 54
  ident: b21
  article-title: An analysis of time-dependent planning
  publication-title: AAAI
– reference: Jesus, A. D., Liefooghe, A., Derbel, B., & Paquete, L. (2020). Algorithm selection of anytime algorithms. In
– start-page: 346
  year: 2012
  end-page: 361
  ident: b46
  article-title: Ensembles on random patches
  publication-title: Machine learning and knowledge discovery in databases: European conference
– reference: Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In
– start-page: 32
  year: 2016
  end-page: 47
  ident: b13
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
  publication-title: International conference on learning and intelligent optimization
– year: 2017
  ident: b7
  article-title: Accelerating neural architecture search using performance prediction
– volume: 17
  year: 1996
  ident: b63
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Magazine
– start-page: 825
  year: 2013
  end-page: 840
  ident: b52
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
  publication-title: International conference on evolutionary multi-criterion optimization
– volume: 36
  start-page: 267
  year: 2009
  end-page: 306
  ident: b33
  article-title: ParamILS: an automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
– volume: vol. 10556
  start-page: 235
  year: 2017
  end-page: 250
  ident: b51
  article-title: An experimental study of adaptive capping in irace
  publication-title: Learning and intelligent optimization
– start-page: 1
  year: 2023
  end-page: 22
  ident: b57
  article-title: Realtime gray-box algorithm configuration using cost-sensitive classification
  publication-title: Annals of Mathematics and Artificial Intelligence
– volume: vol. 12831
  start-page: 11
  year: 2021
  end-page: 20
  ident: b2
  article-title: PyDGGA: Distributed GGA for automatic configuration
  publication-title: Theory and applications of satisfiability testing - SAT
– start-page: 39
  year: 2019
  end-page: 56
  ident: b9
  article-title: Core-boosted linear search for incomplete MaxSAT
  publication-title: Integration of constraint programming, artificial intelligence, and operations research
– volume: vol. 1
  start-page: 1
  year: 2015
  end-page: 4
  ident: b17
  article-title: XGBoost: extreme gradient boosting
  publication-title: R package version 0.4-2
– volume: 289
  start-page: 1209
  year: 2021
  end-page: 1222
  ident: b24
  article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
  publication-title: European Journal of Operational Research
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b5
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
– reference: Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K. (2015). Model-Based Genetic Algorithms for Algorithm Configuration. In
– reference: (pp. 850–858).
– volume: vol. 5
  year: 2024
  ident: b38
  article-title: Configuring mixed-integer programming solvers for large-scale instances
  publication-title: Operations research forum
– start-page: 1
  year: 2020
  end-page: 8
  ident: b14
  article-title: Anytime behavior of inexact TSP solvers and perspectives for automated algorithm selection
  publication-title: 2020 IEEE congress on evolutionary computation
– reference: Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2017). Learning Curve Prediction with Bayesian Neural Networks. In
– start-page: 221
  year: 1998
  end-page: 228
  ident: b55
  article-title: Evolutionary computation and convergence to a pareto front
  publication-title: Late breaking papers at the genetic programming 1998 conference
– start-page: 36
  year: 2014
  end-page: 40
  ident: b34
  article-title: AClib: A benchmark library for algorithm configuration
  publication-title: Learning and intelligent optimization
– volume: 3
  start-page: 4
  year: 2011
  end-page: 21
  ident: b50
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms
– reference: (pp. 2197–2200).
– volume: 36
  year: 2024
  ident: b29
  article-title: Utilitarian algorithm configuration
  publication-title: Advances in Neural Information Processing Systems
– volume: 24
  start-page: 411
  year: 2016
  end-page: 425
  ident: b41
  article-title: Hypervolume subset selection in two dimensions: Formulations and algorithms
  publication-title: Evolutionary Computation
– volume: vol. 2
  year: 2002
  ident: b11
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Gecco
– reference: (pp. 263–264).
– start-page: 108
  year: 2007
  end-page: 122
  ident: b8
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
  publication-title: Hybrid metaheuristics: 4th international workshop, HM 2007, dortmund, Germany, October 8-9, 2007. proceedings 4
– start-page: 11659
  year: 2023
  end-page: 11682
  ident: b28
  article-title: Formalizing preferences over runtime distributions
  publication-title: International conference on machine learning
– year: 2005
  ident: b18
  article-title: Stochastic local search methods for highly constrained combinatorial optimisation problems
– year: 1999
  ident: b58
  publication-title: Integer and combinatorial optimization
– volume: 248
  start-page: 943
  year: 2016
  end-page: 953
  ident: b23
  article-title: Dash: Dynamic approach for switching heuristics
  publication-title: European Journal of Operational Research
– volume: 316
  start-page: 152
  year: 2024
  end-page: 167
  ident: b47
  article-title: An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem
  publication-title: European Journal of Operational Research
– volume: 60
  start-page: 611
  year: 2012
  end-page: 624
  ident: b56
  article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems
  publication-title: Operations Research
– start-page: 54
  year: 2018
  end-page: 72
  ident: b49
  article-title: Solving MaxSAT with bit-vector optimization
  publication-title: Theory and applications of satisfiability testing
– volume: 75
  start-page: 425
  year: 2022
  end-page: 487
  ident: b54
  article-title: A survey of methods for automated algorithm configuration
  publication-title: Journal of Artificial Intelligence Research
– volume: 21
  start-page: 1
  year: 2020
  end-page: 13
  ident: b19
  article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– volume: 26
  start-page: 1293
  year: 2022
  end-page: 1305
  ident: b31
  article-title: Anytime performance assessment in blackbox optimization benchmarking
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 139
  year: 2022
  ident: b20
  article-title: Capping methods for the automatic configuration of optimization algorithms
  publication-title: Computers & Operations Research
– reference: Branke, J., & Elomari, J. (2011). Simultaneous tuning of metaheuristic parameters for various computing budgets. In
– start-page: 1383
  year: 2015
  end-page: 1390
  ident: b62
  article-title: SPRINT: Multi-objective model racing
  publication-title: Proceedings of the genetic and evolutionary computation conference
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b16
  article-title: Random forests
  publication-title: Machine Learning
– year: 2022
  ident: b35
  article-title: ILOG CPLEX optimization studio 22.1.1: User’s manual
– start-page: 507
  year: 2011
  end-page: 523
  ident: b32
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Learning and intelligent optimization: 5th international conference, LION 5, Rome, Italy, January 17-21, 2011. selected papers 5
– volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: b45
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
– start-page: 1565
  year: 2013
  end-page: 1572
  ident: b60
  article-title: S-Race: A multi-objective racing algorithm
  publication-title: Genetic and evolutionary computation conference
– reference: Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In
– reference: (pp. 356–359).
– start-page: 142
  year: 2009
  end-page: 157
  ident: b3
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
  publication-title: International conference on principles and practice of constraint programming
– start-page: 3460
  year: 2015
  end-page: 3468
  ident: b25
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
  publication-title: Proceedings of the twenty-fourth international joint conference on artificial intelligence
– reference: (pp. 733–739).
– reference: .
– reference: Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In
– year: 2021
  ident: b42
  article-title: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization
– volume: 42
  start-page: 6609
  year: 2015
  end-page: 6619
  ident: b6
  article-title: Example-dependent cost-sensitive decision trees
  publication-title: Expert Systems with Applications
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b10
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– year: 2024
  ident: b48
  article-title: SardineCan
– year: 2020
  ident: b4
  publication-title: MaxSAT evaluation 2020: Solver and benchmark descriptions
– start-page: 292
  year: 1998
  end-page: 301
  ident: b64
  article-title: Multiobjective optimization using evolutionary algorithms—a comparative case study
  publication-title: International conference on parallel problem solving from nature
– start-page: 311
  year: 2010
  end-page: 336
  ident: b12
  article-title: F-race and iterated F-Race: An overview
  publication-title: Experimental Methods for the Analysis of Optimization Algorithms
– volume: 46
  start-page: 1863
  year: 2015
  end-page: 1876
  ident: b61
  article-title: Multi-objective model selection via racing
  publication-title: IEEE Transactions on Cybernetics
– start-page: 507
  year: 2011
  ident: 10.1016/j.ejor.2025.07.024_b32
  article-title: Sequential model-based optimization for general algorithm configuration
– start-page: 825
  year: 2013
  ident: 10.1016/j.ejor.2025.07.024_b52
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
– volume: vol. 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b17
  article-title: XGBoost: extreme gradient boosting
– volume: 248
  start-page: 943
  issue: 3
  year: 2016
  ident: 10.1016/j.ejor.2025.07.024_b23
  article-title: Dash: Dynamic approach for switching heuristics
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.08.018
– volume: 3
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2025.07.024_b50
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms
  doi: 10.1504/IJKESDP.2011.039875
– volume: 60
  start-page: 611
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2025.07.024_b56
  article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems
  publication-title: Operations Research
  doi: 10.1287/opre.1120.1048
– volume: 24
  start-page: 411
  issue: 3
  year: 2016
  ident: 10.1016/j.ejor.2025.07.024_b41
  article-title: Hypervolume subset selection in two dimensions: Formulations and algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00157
– start-page: 36
  year: 2014
  ident: 10.1016/j.ejor.2025.07.024_b34
  article-title: AClib: A benchmark library for algorithm configuration
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.ejor.2025.07.024_b45
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
– volume: 289
  start-page: 1209
  issue: 3
  year: 2021
  ident: 10.1016/j.ejor.2025.07.024_b24
  article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.059
– volume: 36
  year: 2024
  ident: 10.1016/j.ejor.2025.07.024_b29
  article-title: Utilitarian algorithm configuration
  publication-title: Advances in Neural Information Processing Systems
– start-page: 221
  year: 1998
  ident: 10.1016/j.ejor.2025.07.024_b55
  article-title: Evolutionary computation and convergence to a pareto front
– ident: 10.1016/j.ejor.2025.07.024_b15
  doi: 10.1145/2001858.2002006
– volume: vol. 10556
  start-page: 235
  year: 2017
  ident: 10.1016/j.ejor.2025.07.024_b51
  article-title: An experimental study of adaptive capping in irace
– ident: 10.1016/j.ejor.2025.07.024_b1
– volume: vol. 2
  year: 2002
  ident: 10.1016/j.ejor.2025.07.024_b11
  article-title: A racing algorithm for configuring metaheuristics
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ejor.2025.07.024_b22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 42
  start-page: 6609
  issue: 19
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b6
  article-title: Example-dependent cost-sensitive decision trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.042
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ejor.2025.07.024_b16
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– year: 2005
  ident: 10.1016/j.ejor.2025.07.024_b18
– ident: 10.1016/j.ejor.2025.07.024_b39
– volume: 75
  start-page: 425
  year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b54
  article-title: A survey of methods for automated algorithm configuration
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.13676
– start-page: 292
  year: 1998
  ident: 10.1016/j.ejor.2025.07.024_b64
  article-title: Multiobjective optimization using evolutionary algorithms—a comparative case study
– volume: 46
  start-page: 1863
  issue: 8
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b61
  article-title: Multi-objective model selection via racing
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2456187
– volume: 243
  start-page: 369
  issue: 2
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b27
  article-title: Anytime Pareto local search
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.10.062
– volume: 235
  start-page: 569
  issue: 3
  year: 2014
  ident: 10.1016/j.ejor.2025.07.024_b44
  article-title: Automatically improving the anytime behaviour of optimisation algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.10.043
– volume: 17
  issue: 3
  year: 1996
  ident: 10.1016/j.ejor.2025.07.024_b63
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Magazine
– year: 2021
  ident: 10.1016/j.ejor.2025.07.024_b42
– start-page: 54
  year: 2018
  ident: 10.1016/j.ejor.2025.07.024_b49
  article-title: Solving MaxSAT with bit-vector optimization
– start-page: 1383
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b62
  article-title: SPRINT: Multi-objective model racing
– volume: 26
  start-page: 1293
  issue: 6
  year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b31
  article-title: Anytime performance assessment in blackbox optimization benchmarking
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3210897
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.ejor.2025.07.024_b10
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2025.07.024_b5
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00009
– start-page: 346
  year: 2012
  ident: 10.1016/j.ejor.2025.07.024_b46
  article-title: Ensembles on random patches
– year: 2017
  ident: 10.1016/j.ejor.2025.07.024_b7
– start-page: 454
  year: 2011
  ident: 10.1016/j.ejor.2025.07.024_b37
  article-title: Algorithm selection and scheduling
– start-page: 311
  year: 2010
  ident: 10.1016/j.ejor.2025.07.024_b12
  article-title: F-race and iterated F-Race: An overview
  publication-title: Experimental Methods for the Analysis of Optimization Algorithms
  doi: 10.1007/978-3-642-02538-9_13
– volume: vol. 88
  start-page: 49
  year: 1988
  ident: 10.1016/j.ejor.2025.07.024_b21
  article-title: An analysis of time-dependent planning
– volume: vol. 5
  year: 2024
  ident: 10.1016/j.ejor.2025.07.024_b38
  article-title: Configuring mixed-integer programming solvers for large-scale instances
– ident: 10.1016/j.ejor.2025.07.024_b40
– start-page: 357
  year: 2012
  ident: 10.1016/j.ejor.2025.07.024_b43
  article-title: On the anytime behavior of IPOP-CMA-ES
– start-page: 1
  year: 2020
  ident: 10.1016/j.ejor.2025.07.024_b14
  article-title: Anytime behavior of inexact TSP solvers and perspectives for automated algorithm selection
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2025.07.024_b19
  article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 316
  start-page: 152
  issue: 1
  year: 2024
  ident: 10.1016/j.ejor.2025.07.024_b47
  article-title: An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2024.02.003
– year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b30
– year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b35
– year: 2024
  ident: 10.1016/j.ejor.2025.07.024_b48
– volume: 36
  start-page: 267
  year: 2009
  ident: 10.1016/j.ejor.2025.07.024_b33
  article-title: ParamILS: an automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2861
– volume: 139
  year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b20
  article-title: Capping methods for the automatic configuration of optimization algorithms
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105615
– start-page: 1
  year: 2023
  ident: 10.1016/j.ejor.2025.07.024_b57
  article-title: Realtime gray-box algorithm configuration using cost-sensitive classification
  publication-title: Annals of Mathematics and Artificial Intelligence
– volume: 26
  start-page: 1526
  issue: 6
  year: 2022
  ident: 10.1016/j.ejor.2025.07.024_b59
  article-title: Automated configuration of genetic algorithms by tuning for anytime performance
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3159087
– start-page: 3460
  year: 2015
  ident: 10.1016/j.ejor.2025.07.024_b25
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
– start-page: 1565
  year: 2013
  ident: 10.1016/j.ejor.2025.07.024_b60
  article-title: S-Race: A multi-objective racing algorithm
– year: 1999
  ident: 10.1016/j.ejor.2025.07.024_b58
– start-page: 142
  year: 2009
  ident: 10.1016/j.ejor.2025.07.024_b3
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
– volume: vol. 12831
  start-page: 11
  year: 2021
  ident: 10.1016/j.ejor.2025.07.024_b2
  article-title: PyDGGA: Distributed GGA for automatic configuration
– ident: 10.1016/j.ejor.2025.07.024_b26
  doi: 10.1145/1570256.1570301
– ident: 10.1016/j.ejor.2025.07.024_b36
  doi: 10.1145/3377930.3390185
– year: 2020
  ident: 10.1016/j.ejor.2025.07.024_b4
– start-page: 11659
  year: 2023
  ident: 10.1016/j.ejor.2025.07.024_b28
  article-title: Formalizing preferences over runtime distributions
– ident: 10.1016/j.ejor.2025.07.024_b53
  doi: 10.1145/3520304.3528998
– start-page: 39
  year: 2019
  ident: 10.1016/j.ejor.2025.07.024_b9
  article-title: Core-boosted linear search for incomplete MaxSAT
– start-page: 32
  year: 2016
  ident: 10.1016/j.ejor.2025.07.024_b13
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
– start-page: 108
  year: 2007
  ident: 10.1016/j.ejor.2025.07.024_b8
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
SSID ssj0001515
Score 2.4986684
Snippet Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 577
SubjectTerms Combinatorial optimization
Evolutionary computations
Integer programming
Machine learning
Title A method for the automated configuration of anytime portfolios of algorithms
URI https://dx.doi.org/10.1016/j.ejor.2025.07.024
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001515
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddO8b6sI9so-22ooe-FY9E1of9GErKPkoZLIW8GcmSOodgFzcZ_fN7smQl7bqxPuzFBEGUWPfj7ufz3e8QOqLSkFwzngBdZQnlepRIyUQiUqrAOXLFdGfpM3F-ns1m-fdQkHndjRMQdZ3d3ORX_9XUsAbGdq2zjzB33BQW4DMYHa5gdrj-k-HHYSp0LCCUq2UDvNS4_rXaVperNtJE8ARuuPyxI-G2WVRNV9ghF5dNWy1_BiHzh_L2gcPCQttnE4NsUEwv_wA4eE3fyaKSkbpPIQ6HCrNvEJTrzbQD4eu6q77dSoiEEN942bvSNGQvqo1HWu8YWRjW4mMs8yNCf3PfPpMw_2TmjdNqJawTVvVN1ne1su_FsFhZ2BetzQu3R-H2KIaigD2eoB0iWA6eb2f8ZTL7GuO1o3Tdu6ZwQ6G1ylcB3v8nD9OXDUoyfYVehGcJPPYYeI22TD1Az_pWhgF62Y_swMGDD9Duhv7kG3Q2xh4rGLCCASs4YgXfwQpuLA5YwWusdKsRK2_RxelkevI5CeM1khL4Ck14rii1uU1ZpoG25czKEVVlaiUZGi6FZFy46QpaKpkxaZVw4pWlNsIKTYlK36HtuqnNHsKcZBqY95BbnlGd5WokpChLQXiZGZXKfXTcn1px5VVUij9bah-x_mCLwAM9vysAJ3_53sGjfuU9er7G9Qe0vWxX5iN6Wv5aVtftYQDJLUNQgNg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+the+automated+configuration+of+anytime+portfolios+of+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Schede%2C+Elias&rft.au=Tierney%2C+Kevin&rft.date=2026-03-01&rft.issn=0377-2217&rft.volume=329&rft.issue=2&rft.spage=577&rft.epage=590&rft_id=info:doi/10.1016%2Fj.ejor.2025.07.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2025_07_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon