A method for the automated configuration of anytime portfolios of algorithms
Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they ca...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 329; H. 2; S. 577 - 590 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2026
|
| Schlagworte: | |
| ISSN: | 0377-2217 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they can be stopped at any time during their execution and provide a feasible solution. Setting the parameters of anytime algorithms is difficult, as the parameters ought to provide robust performance across varying execution times. Traditional algorithm configuration methods address this challenge by finding a one-size-fits-all parameter configuration, however finding a portfolio of configurations, each targeted to a different runtime, can lead to better overall performance. We introduce a novel algorithm configuration method for configuring anytime algorithms that produces viable configuration portfolios that assign different configurations to different runtimes. Our proposed method harnesses an early termination mechanism for unpromising configurations using a cost-sensitive machine learning approach. Furthermore, it uses two novel MIP formulations to discard configurations and to create the configuration portfolio, respectively.
•Introduces a new configurator to improve anytime performance of algorithms.•Creates configuration portfolios, assigning configurations to algorithm cutoffs.•Capping poor performing configurations early using a cost sensitive learned model. |
|---|---|
| AbstractList | Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they can be stopped at any time during their execution and provide a feasible solution. Setting the parameters of anytime algorithms is difficult, as the parameters ought to provide robust performance across varying execution times. Traditional algorithm configuration methods address this challenge by finding a one-size-fits-all parameter configuration, however finding a portfolio of configurations, each targeted to a different runtime, can lead to better overall performance. We introduce a novel algorithm configuration method for configuring anytime algorithms that produces viable configuration portfolios that assign different configurations to different runtimes. Our proposed method harnesses an early termination mechanism for unpromising configurations using a cost-sensitive machine learning approach. Furthermore, it uses two novel MIP formulations to discard configurations and to create the configuration portfolio, respectively.
•Introduces a new configurator to improve anytime performance of algorithms.•Creates configuration portfolios, assigning configurations to algorithm cutoffs.•Capping poor performing configurations early using a cost sensitive learned model. |
| Author | Schede, Elias Tierney, Kevin |
| Author_xml | – sequence: 1 givenname: Elias surname: Schede fullname: Schede, Elias email: elias.schede@uni-bielefeld.de – sequence: 2 givenname: Kevin orcidid: 0000-0002-5931-4907 surname: Tierney fullname: Tierney, Kevin |
| BookMark | eNp9kMtqwzAURLVIoUnaH-hKP2BXkmXLgW5C6AsM3bRrIUtXiUzsGySlkL9v0nTd1cDAGYazILMJJyDkgbOSM948DiUMGEvBRF0yVTIhZ2TOKqUKIbi6JYuUBsYYr3k9J92ajpB36KjHSPMOqDlmHE0GRy1OPmyP0eSAE0VPzXTKYQR6wJg97gOm33a_xRjybkx35MabfYL7v1ySr5fnz81b0X28vm_WXWEFF7JoVr2UfuWrunUtb1e1N1z2tvJGMGiMMnWjlFStM71pa-N7JWSlrAPllZOir5ZEXHdtxJQieH2IYTTxpDnTFwd60BcH-uJAM6XPDs7Q0xWC87PvAFEnG2Cy4EIEm7XD8B_-A08Saoo |
| Cites_doi | 10.1016/j.ejor.2015.08.018 10.1504/IJKESDP.2011.039875 10.1287/opre.1120.1048 10.1162/EVCO_a_00157 10.1016/j.orp.2016.09.002 10.1016/j.ejor.2020.07.059 10.1145/2001858.2002006 10.1109/4235.996017 10.1016/j.eswa.2015.04.042 10.1023/A:1010933404324 10.1613/jair.1.13676 10.1109/TCYB.2015.2456187 10.1016/j.ejor.2014.10.062 10.1016/j.ejor.2013.10.043 10.1109/TEVC.2022.3210897 10.1016/j.ejor.2006.08.008 10.1162/EVCO_a_00009 10.1007/978-3-642-02538-9_13 10.1186/s12864-019-6413-7 10.1016/j.ejor.2024.02.003 10.1613/jair.2861 10.1016/j.cor.2021.105615 10.1109/TEVC.2022.3159087 10.1145/1570256.1570301 10.1145/3377930.3390185 10.1145/3520304.3528998 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ejor.2025.07.024 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EndPage | 590 |
| ExternalDocumentID | 10_1016_j_ejor_2025_07_024 S0377221725005491 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ACDAQ ACGFO ACGFS ACIWK ACLOT ACNCT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- ~HD 1OL 29G 41~ 9DU AAAKG AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADIYS ADJOM ADMUD ADNMO ADXHL AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HVGLF HZ~ LY1 M41 R2- VH1 WUQ |
| ID | FETCH-LOGICAL-c2124-69b44f9f358d81895fa14bc3fa20e6a7a5677478daba85afb72437cde7f7d42b3 |
| ISSN | 0377-2217 |
| IngestDate | Thu Nov 27 01:06:33 EST 2025 Sat Nov 29 17:02:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Integer programming Evolutionary computations Combinatorial optimization Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2124-69b44f9f358d81895fa14bc3fa20e6a7a5677478daba85afb72437cde7f7d42b3 |
| ORCID | 0000-0002-5931-4907 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ejor.2025.07.024 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2025_07_024 elsevier_sciencedirect_doi_10_1016_j_ejor_2025_07_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-03-01 2026-03-00 |
| PublicationDateYYYYMMDD | 2026-03-01 |
| PublicationDate_xml | – month: 03 year: 2026 text: 2026-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | De Souza, Ritt, López-Ibáñez (b20) 2022; 139 Lindauer, Eggensperger, Feurer, Biedenkapp, Deng, Benjamins, Sass, Hutter (b42) 2021 Kuhn, Fonseca, Paquete, Ruzika, Duarte, Figueira (b41) 2016; 24 Hutter, Hoos, Leyton-Brown (b32) 2011 (pp. 733–739). Berg, Demirović, Stuckey (b9) 2019 Kemminer, Lange, Kempkes, Tierney, Weiß (b38) 2024; vol. 5 Branke, J., & Elomari, J. (2011). Simultaneous tuning of metaheuristic parameters for various computing budgets. In Ansótegui, Sellmann, Tierney (b3) 2009 Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In Chicco, Jurman (b19) 2020; 21 Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In Baker, Gupta, Raskar, Naik (b7) 2017 Birattari, Stützle, Paquete, Varrentrapp (b11) 2002; vol. 2 Wolsey, Nemhauser (b58) 1999 Bacchus, Berg, Järvisalo, Martins (b4) 2020 Hansen, Auger, Brockhoff, Tušar (b31) 2022; 26 Nadel (b49) 2018 . Weiss, Tierney (b57) 2023 Zilberstein (b63) 1996; 17 Gurobi Optimization, LLC (b30) 2022 Zhang, Georgiopoulos, Anagnostopoulos (b62) 2015 Breiman (b16) 2001; 45 Radulescu, López-Ibáñez, Stützle (b52) 2013 Birattari, Yuan, Balaprakash, Stützle (b12) 2010 López-Ibánez, Dubois-Lacoste, Leslie, Birattari, Stützle (b45) 2016; 3 Jesus, A. D., Liefooghe, A., Derbel, B., & Paquete, L. (2020). Algorithm selection of anytime algorithms. In Van Veldhuizen, Lamont (b55) 1998 Bahnsen, Aouada, Ottersten (b6) 2015; 42 Hutter, López-Ibánez, Fawcett, Lindauer, Hoos, Leyton-Brown, Stützle (b34) 2014 Domhan, Springenberg, Hutter (b25) 2015 Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In Dean, Boddy (b21) 1988; vol. 88 López-Ibáñez, Liao, Stützle (b43) 2012 Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2017). Learning Curve Prediction with Bayesian Neural Networks. In Diaz, López-Ibáñez (b24) 2021; 289 Zhang, Georgiopoulos, Anagnostopoulos (b60) 2013 Pérez Cáceres, nez, Hoos, Stützle (b51) 2017; vol. 10556 Chiarandini (b18) 2005 Louppe, Geurts (b46) 2012 Merschformann (b48) 2024 López-Ibáñez, Stützle (b44) 2014; 235 Zitzler, Thiele (b64) 1998 Zhang, Georgiopoulos, Anagnostopoulos (b61) 2015; 46 Di Liberto, Kadioglu, Leo, Malitsky (b23) 2016; 248 Graham, Leyton-Brown, Roughgarden (b28) 2023 Balaprakash, Birattari, Stützle (b8) 2007 Beume, Naujoks, Emmerich (b10) 2007; 181 Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier, Tierney (b54) 2022; 75 Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann (b37) 2011 Bader, Zitzler (b5) 2011; 19 Bossek, Kerschke, Trautmann (b14) 2020 Dubois-Lacoste, López-Ibáñez, Stützle (b27) 2015; 243 Graham, Leyton-Brown, Roughgarden (b29) 2024; 36 Ye, Doerr, Wang, Bäck (b59) 2022; 26 Chen, He, Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano, Zhou (b17) 2015; vol. 1 Nguyen, Cooper, Kamei (b50) 2011; 3 Blot, Hoos, Jourdan, Kessaci-Marmion, Trautmann (b13) 2016 (pp. 850–858). Martin-Iradi, Pacino, Ropke (b47) 2024; 316 Deb, Pratap, Agarwal, Meyarivan (b22) 2002; 6 (pp. 2197–2200). Vidal, Crainic, Gendreau, Lahrichi, Rei (b56) 2012; 60 (pp. 356–359). IBM (b35) 2022 Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K. (2015). Model-Based Genetic Algorithms for Algorithm Configuration. In Ansótegui, Pon, Sellmann, Tierney (b2) 2021; vol. 12831 (pp. 263–264). Hutter, Hoos, Leyton-Brown, Stützle (b33) 2009; 36 Graham (10.1016/j.ejor.2025.07.024_b29) 2024; 36 Zilberstein (10.1016/j.ejor.2025.07.024_b63) 1996; 17 López-Ibáñez (10.1016/j.ejor.2025.07.024_b44) 2014; 235 Domhan (10.1016/j.ejor.2025.07.024_b25) 2015 Nguyen (10.1016/j.ejor.2025.07.024_b50) 2011; 3 Zhang (10.1016/j.ejor.2025.07.024_b61) 2015; 46 Beume (10.1016/j.ejor.2025.07.024_b10) 2007; 181 Graham (10.1016/j.ejor.2025.07.024_b28) 2023 Hutter (10.1016/j.ejor.2025.07.024_b33) 2009; 36 10.1016/j.ejor.2025.07.024_b53 Hutter (10.1016/j.ejor.2025.07.024_b34) 2014 Zhang (10.1016/j.ejor.2025.07.024_b60) 2013 Blot (10.1016/j.ejor.2025.07.024_b13) 2016 Schede (10.1016/j.ejor.2025.07.024_b54) 2022; 75 Bacchus (10.1016/j.ejor.2025.07.024_b4) 2020 Balaprakash (10.1016/j.ejor.2025.07.024_b8) 2007 Birattari (10.1016/j.ejor.2025.07.024_b11) 2002; vol. 2 Martin-Iradi (10.1016/j.ejor.2025.07.024_b47) 2024; 316 10.1016/j.ejor.2025.07.024_b15 Breiman (10.1016/j.ejor.2025.07.024_b16) 2001; 45 Chen (10.1016/j.ejor.2025.07.024_b17) 2015; vol. 1 Bahnsen (10.1016/j.ejor.2025.07.024_b6) 2015; 42 Bossek (10.1016/j.ejor.2025.07.024_b14) 2020 Pérez Cáceres (10.1016/j.ejor.2025.07.024_b51) 2017; vol. 10556 IBM (10.1016/j.ejor.2025.07.024_b35) 2022 Berg (10.1016/j.ejor.2025.07.024_b9) 2019 Deb (10.1016/j.ejor.2025.07.024_b22) 2002; 6 Kadioglu (10.1016/j.ejor.2025.07.024_b37) 2011 Radulescu (10.1016/j.ejor.2025.07.024_b52) 2013 Wolsey (10.1016/j.ejor.2025.07.024_b58) 1999 10.1016/j.ejor.2025.07.024_b26 Gurobi Optimization, LLC (10.1016/j.ejor.2025.07.024_b30) 2022 Kemminer (10.1016/j.ejor.2025.07.024_b38) 2024; vol. 5 Kuhn (10.1016/j.ejor.2025.07.024_b41) 2016; 24 Di Liberto (10.1016/j.ejor.2025.07.024_b23) 2016; 248 Lindauer (10.1016/j.ejor.2025.07.024_b42) 2021 Bader (10.1016/j.ejor.2025.07.024_b5) 2011; 19 Chiarandini (10.1016/j.ejor.2025.07.024_b18) 2005 Baker (10.1016/j.ejor.2025.07.024_b7) 2017 Zhang (10.1016/j.ejor.2025.07.024_b62) 2015 Birattari (10.1016/j.ejor.2025.07.024_b12) 2010 López-Ibáñez (10.1016/j.ejor.2025.07.024_b43) 2012 10.1016/j.ejor.2025.07.024_b1 Weiss (10.1016/j.ejor.2025.07.024_b57) 2023 Diaz (10.1016/j.ejor.2025.07.024_b24) 2021; 289 Nadel (10.1016/j.ejor.2025.07.024_b49) 2018 10.1016/j.ejor.2025.07.024_b39 Ansótegui (10.1016/j.ejor.2025.07.024_b2) 2021; vol. 12831 Ansótegui (10.1016/j.ejor.2025.07.024_b3) 2009 10.1016/j.ejor.2025.07.024_b36 Ye (10.1016/j.ejor.2025.07.024_b59) 2022; 26 Zitzler (10.1016/j.ejor.2025.07.024_b64) 1998 López-Ibánez (10.1016/j.ejor.2025.07.024_b45) 2016; 3 Dubois-Lacoste (10.1016/j.ejor.2025.07.024_b27) 2015; 243 Van Veldhuizen (10.1016/j.ejor.2025.07.024_b55) 1998 Hansen (10.1016/j.ejor.2025.07.024_b31) 2022; 26 Vidal (10.1016/j.ejor.2025.07.024_b56) 2012; 60 10.1016/j.ejor.2025.07.024_b40 Louppe (10.1016/j.ejor.2025.07.024_b46) 2012 Dean (10.1016/j.ejor.2025.07.024_b21) 1988; vol. 88 Merschformann (10.1016/j.ejor.2025.07.024_b48) 2024 Chicco (10.1016/j.ejor.2025.07.024_b19) 2020; 21 De Souza (10.1016/j.ejor.2025.07.024_b20) 2022; 139 Hutter (10.1016/j.ejor.2025.07.024_b32) 2011 |
| References_xml | – volume: 243 start-page: 369 year: 2015 end-page: 385 ident: b27 article-title: Anytime Pareto local search publication-title: European Journal of Operational Research – volume: 26 start-page: 1526 year: 2022 end-page: 1538 ident: b59 article-title: Automated configuration of genetic algorithms by tuning for anytime performance publication-title: IEEE Transactions on Evolutionary Computation – start-page: 357 year: 2012 end-page: 366 ident: b43 article-title: On the anytime behavior of IPOP-CMA-ES publication-title: Parallel problem solving from nature-PPSN XII: 12th international conference, Taormina, Italy, September 1-5, 2012, proceedings, part i 12 – volume: 235 start-page: 569 year: 2014 end-page: 582 ident: b44 article-title: Automatically improving the anytime behaviour of optimisation algorithms publication-title: European Journal of Operational Research – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b22 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – year: 2022 ident: b30 article-title: Gurobi optimizer reference manual – start-page: 454 year: 2011 end-page: 469 ident: b37 article-title: Algorithm selection and scheduling publication-title: Principles and practice of constraint programming, CP – volume: vol. 88 start-page: 49 year: 1988 end-page: 54 ident: b21 article-title: An analysis of time-dependent planning publication-title: AAAI – reference: Jesus, A. D., Liefooghe, A., Derbel, B., & Paquete, L. (2020). Algorithm selection of anytime algorithms. In – start-page: 346 year: 2012 end-page: 361 ident: b46 article-title: Ensembles on random patches publication-title: Machine learning and knowledge discovery in databases: European conference – reference: Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In – start-page: 32 year: 2016 end-page: 47 ident: b13 article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework publication-title: International conference on learning and intelligent optimization – year: 2017 ident: b7 article-title: Accelerating neural architecture search using performance prediction – volume: 17 year: 1996 ident: b63 article-title: Using anytime algorithms in intelligent systems publication-title: AI Magazine – start-page: 825 year: 2013 end-page: 840 ident: b52 article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms publication-title: International conference on evolutionary multi-criterion optimization – volume: 36 start-page: 267 year: 2009 end-page: 306 ident: b33 article-title: ParamILS: an automatic algorithm configuration framework publication-title: Journal of Artificial Intelligence Research – volume: vol. 10556 start-page: 235 year: 2017 end-page: 250 ident: b51 article-title: An experimental study of adaptive capping in irace publication-title: Learning and intelligent optimization – start-page: 1 year: 2023 end-page: 22 ident: b57 article-title: Realtime gray-box algorithm configuration using cost-sensitive classification publication-title: Annals of Mathematics and Artificial Intelligence – volume: vol. 12831 start-page: 11 year: 2021 end-page: 20 ident: b2 article-title: PyDGGA: Distributed GGA for automatic configuration publication-title: Theory and applications of satisfiability testing - SAT – start-page: 39 year: 2019 end-page: 56 ident: b9 article-title: Core-boosted linear search for incomplete MaxSAT publication-title: Integration of constraint programming, artificial intelligence, and operations research – volume: vol. 1 start-page: 1 year: 2015 end-page: 4 ident: b17 article-title: XGBoost: extreme gradient boosting publication-title: R package version 0.4-2 – volume: 289 start-page: 1209 year: 2021 end-page: 1222 ident: b24 article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms publication-title: European Journal of Operational Research – volume: 19 start-page: 45 year: 2011 end-page: 76 ident: b5 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evolutionary Computation – reference: Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K. (2015). Model-Based Genetic Algorithms for Algorithm Configuration. In – reference: (pp. 850–858). – volume: vol. 5 year: 2024 ident: b38 article-title: Configuring mixed-integer programming solvers for large-scale instances publication-title: Operations research forum – start-page: 1 year: 2020 end-page: 8 ident: b14 article-title: Anytime behavior of inexact TSP solvers and perspectives for automated algorithm selection publication-title: 2020 IEEE congress on evolutionary computation – reference: Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2017). Learning Curve Prediction with Bayesian Neural Networks. In – start-page: 221 year: 1998 end-page: 228 ident: b55 article-title: Evolutionary computation and convergence to a pareto front publication-title: Late breaking papers at the genetic programming 1998 conference – start-page: 36 year: 2014 end-page: 40 ident: b34 article-title: AClib: A benchmark library for algorithm configuration publication-title: Learning and intelligent optimization – volume: 3 start-page: 4 year: 2011 end-page: 21 ident: b50 article-title: Borderline over-sampling for imbalanced data classification publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms – reference: (pp. 2197–2200). – volume: 36 year: 2024 ident: b29 article-title: Utilitarian algorithm configuration publication-title: Advances in Neural Information Processing Systems – volume: 24 start-page: 411 year: 2016 end-page: 425 ident: b41 article-title: Hypervolume subset selection in two dimensions: Formulations and algorithms publication-title: Evolutionary Computation – volume: vol. 2 year: 2002 ident: b11 article-title: A racing algorithm for configuring metaheuristics publication-title: Gecco – reference: (pp. 263–264). – start-page: 108 year: 2007 end-page: 122 ident: b8 article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement publication-title: Hybrid metaheuristics: 4th international workshop, HM 2007, dortmund, Germany, October 8-9, 2007. proceedings 4 – start-page: 11659 year: 2023 end-page: 11682 ident: b28 article-title: Formalizing preferences over runtime distributions publication-title: International conference on machine learning – year: 2005 ident: b18 article-title: Stochastic local search methods for highly constrained combinatorial optimisation problems – year: 1999 ident: b58 publication-title: Integer and combinatorial optimization – volume: 248 start-page: 943 year: 2016 end-page: 953 ident: b23 article-title: Dash: Dynamic approach for switching heuristics publication-title: European Journal of Operational Research – volume: 316 start-page: 152 year: 2024 end-page: 167 ident: b47 article-title: An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem publication-title: European Journal of Operational Research – volume: 60 start-page: 611 year: 2012 end-page: 624 ident: b56 article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems publication-title: Operations Research – start-page: 54 year: 2018 end-page: 72 ident: b49 article-title: Solving MaxSAT with bit-vector optimization publication-title: Theory and applications of satisfiability testing – volume: 75 start-page: 425 year: 2022 end-page: 487 ident: b54 article-title: A survey of methods for automated algorithm configuration publication-title: Journal of Artificial Intelligence Research – volume: 21 start-page: 1 year: 2020 end-page: 13 ident: b19 article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – volume: 26 start-page: 1293 year: 2022 end-page: 1305 ident: b31 article-title: Anytime performance assessment in blackbox optimization benchmarking publication-title: IEEE Transactions on Evolutionary Computation – volume: 139 year: 2022 ident: b20 article-title: Capping methods for the automatic configuration of optimization algorithms publication-title: Computers & Operations Research – reference: Branke, J., & Elomari, J. (2011). Simultaneous tuning of metaheuristic parameters for various computing budgets. In – start-page: 1383 year: 2015 end-page: 1390 ident: b62 article-title: SPRINT: Multi-objective model racing publication-title: Proceedings of the genetic and evolutionary computation conference – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b16 article-title: Random forests publication-title: Machine Learning – year: 2022 ident: b35 article-title: ILOG CPLEX optimization studio 22.1.1: User’s manual – start-page: 507 year: 2011 end-page: 523 ident: b32 article-title: Sequential model-based optimization for general algorithm configuration publication-title: Learning and intelligent optimization: 5th international conference, LION 5, Rome, Italy, January 17-21, 2011. selected papers 5 – volume: 3 start-page: 43 year: 2016 end-page: 58 ident: b45 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives – start-page: 1565 year: 2013 end-page: 1572 ident: b60 article-title: S-Race: A multi-objective racing algorithm publication-title: Genetic and evolutionary computation conference – reference: Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In – reference: (pp. 356–359). – start-page: 142 year: 2009 end-page: 157 ident: b3 article-title: A gender-based genetic algorithm for the automatic configuration of algorithms publication-title: International conference on principles and practice of constraint programming – start-page: 3460 year: 2015 end-page: 3468 ident: b25 article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves publication-title: Proceedings of the twenty-fourth international joint conference on artificial intelligence – reference: (pp. 733–739). – reference: . – reference: Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In – year: 2021 ident: b42 article-title: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization – volume: 42 start-page: 6609 year: 2015 end-page: 6619 ident: b6 article-title: Example-dependent cost-sensitive decision trees publication-title: Expert Systems with Applications – volume: 181 start-page: 1653 year: 2007 end-page: 1669 ident: b10 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research – year: 2024 ident: b48 article-title: SardineCan – year: 2020 ident: b4 publication-title: MaxSAT evaluation 2020: Solver and benchmark descriptions – start-page: 292 year: 1998 end-page: 301 ident: b64 article-title: Multiobjective optimization using evolutionary algorithms—a comparative case study publication-title: International conference on parallel problem solving from nature – start-page: 311 year: 2010 end-page: 336 ident: b12 article-title: F-race and iterated F-Race: An overview publication-title: Experimental Methods for the Analysis of Optimization Algorithms – volume: 46 start-page: 1863 year: 2015 end-page: 1876 ident: b61 article-title: Multi-objective model selection via racing publication-title: IEEE Transactions on Cybernetics – start-page: 507 year: 2011 ident: 10.1016/j.ejor.2025.07.024_b32 article-title: Sequential model-based optimization for general algorithm configuration – start-page: 825 year: 2013 ident: 10.1016/j.ejor.2025.07.024_b52 article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms – volume: vol. 1 start-page: 1 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b17 article-title: XGBoost: extreme gradient boosting – volume: 248 start-page: 943 issue: 3 year: 2016 ident: 10.1016/j.ejor.2025.07.024_b23 article-title: Dash: Dynamic approach for switching heuristics publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.08.018 – volume: 3 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.ejor.2025.07.024_b50 article-title: Borderline over-sampling for imbalanced data classification publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms doi: 10.1504/IJKESDP.2011.039875 – volume: 60 start-page: 611 issue: 3 year: 2012 ident: 10.1016/j.ejor.2025.07.024_b56 article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems publication-title: Operations Research doi: 10.1287/opre.1120.1048 – volume: 24 start-page: 411 issue: 3 year: 2016 ident: 10.1016/j.ejor.2025.07.024_b41 article-title: Hypervolume subset selection in two dimensions: Formulations and algorithms publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00157 – start-page: 36 year: 2014 ident: 10.1016/j.ejor.2025.07.024_b34 article-title: AClib: A benchmark library for algorithm configuration – volume: 3 start-page: 43 year: 2016 ident: 10.1016/j.ejor.2025.07.024_b45 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2016.09.002 – volume: 289 start-page: 1209 issue: 3 year: 2021 ident: 10.1016/j.ejor.2025.07.024_b24 article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.059 – volume: 36 year: 2024 ident: 10.1016/j.ejor.2025.07.024_b29 article-title: Utilitarian algorithm configuration publication-title: Advances in Neural Information Processing Systems – start-page: 221 year: 1998 ident: 10.1016/j.ejor.2025.07.024_b55 article-title: Evolutionary computation and convergence to a pareto front – ident: 10.1016/j.ejor.2025.07.024_b15 doi: 10.1145/2001858.2002006 – volume: vol. 10556 start-page: 235 year: 2017 ident: 10.1016/j.ejor.2025.07.024_b51 article-title: An experimental study of adaptive capping in irace – ident: 10.1016/j.ejor.2025.07.024_b1 – volume: vol. 2 year: 2002 ident: 10.1016/j.ejor.2025.07.024_b11 article-title: A racing algorithm for configuring metaheuristics – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ejor.2025.07.024_b22 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 42 start-page: 6609 issue: 19 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b6 article-title: Example-dependent cost-sensitive decision trees publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.04.042 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ejor.2025.07.024_b16 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – year: 2005 ident: 10.1016/j.ejor.2025.07.024_b18 – ident: 10.1016/j.ejor.2025.07.024_b39 – volume: 75 start-page: 425 year: 2022 ident: 10.1016/j.ejor.2025.07.024_b54 article-title: A survey of methods for automated algorithm configuration publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.13676 – start-page: 292 year: 1998 ident: 10.1016/j.ejor.2025.07.024_b64 article-title: Multiobjective optimization using evolutionary algorithms—a comparative case study – volume: 46 start-page: 1863 issue: 8 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b61 article-title: Multi-objective model selection via racing publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2456187 – volume: 243 start-page: 369 issue: 2 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b27 article-title: Anytime Pareto local search publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.10.062 – volume: 235 start-page: 569 issue: 3 year: 2014 ident: 10.1016/j.ejor.2025.07.024_b44 article-title: Automatically improving the anytime behaviour of optimisation algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.10.043 – volume: 17 issue: 3 year: 1996 ident: 10.1016/j.ejor.2025.07.024_b63 article-title: Using anytime algorithms in intelligent systems publication-title: AI Magazine – year: 2021 ident: 10.1016/j.ejor.2025.07.024_b42 – start-page: 54 year: 2018 ident: 10.1016/j.ejor.2025.07.024_b49 article-title: Solving MaxSAT with bit-vector optimization – start-page: 1383 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b62 article-title: SPRINT: Multi-objective model racing – volume: 26 start-page: 1293 issue: 6 year: 2022 ident: 10.1016/j.ejor.2025.07.024_b31 article-title: Anytime performance assessment in blackbox optimization benchmarking publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3210897 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 10.1016/j.ejor.2025.07.024_b10 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.008 – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.ejor.2025.07.024_b5 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00009 – start-page: 346 year: 2012 ident: 10.1016/j.ejor.2025.07.024_b46 article-title: Ensembles on random patches – year: 2017 ident: 10.1016/j.ejor.2025.07.024_b7 – start-page: 454 year: 2011 ident: 10.1016/j.ejor.2025.07.024_b37 article-title: Algorithm selection and scheduling – start-page: 311 year: 2010 ident: 10.1016/j.ejor.2025.07.024_b12 article-title: F-race and iterated F-Race: An overview publication-title: Experimental Methods for the Analysis of Optimization Algorithms doi: 10.1007/978-3-642-02538-9_13 – volume: vol. 88 start-page: 49 year: 1988 ident: 10.1016/j.ejor.2025.07.024_b21 article-title: An analysis of time-dependent planning – volume: vol. 5 year: 2024 ident: 10.1016/j.ejor.2025.07.024_b38 article-title: Configuring mixed-integer programming solvers for large-scale instances – ident: 10.1016/j.ejor.2025.07.024_b40 – start-page: 357 year: 2012 ident: 10.1016/j.ejor.2025.07.024_b43 article-title: On the anytime behavior of IPOP-CMA-ES – start-page: 1 year: 2020 ident: 10.1016/j.ejor.2025.07.024_b14 article-title: Anytime behavior of inexact TSP solvers and perspectives for automated algorithm selection – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ejor.2025.07.024_b19 article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 316 start-page: 152 issue: 1 year: 2024 ident: 10.1016/j.ejor.2025.07.024_b47 article-title: An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2024.02.003 – year: 2022 ident: 10.1016/j.ejor.2025.07.024_b30 – year: 2022 ident: 10.1016/j.ejor.2025.07.024_b35 – year: 2024 ident: 10.1016/j.ejor.2025.07.024_b48 – volume: 36 start-page: 267 year: 2009 ident: 10.1016/j.ejor.2025.07.024_b33 article-title: ParamILS: an automatic algorithm configuration framework publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.2861 – volume: 139 year: 2022 ident: 10.1016/j.ejor.2025.07.024_b20 article-title: Capping methods for the automatic configuration of optimization algorithms publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105615 – start-page: 1 year: 2023 ident: 10.1016/j.ejor.2025.07.024_b57 article-title: Realtime gray-box algorithm configuration using cost-sensitive classification publication-title: Annals of Mathematics and Artificial Intelligence – volume: 26 start-page: 1526 issue: 6 year: 2022 ident: 10.1016/j.ejor.2025.07.024_b59 article-title: Automated configuration of genetic algorithms by tuning for anytime performance publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3159087 – start-page: 3460 year: 2015 ident: 10.1016/j.ejor.2025.07.024_b25 article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves – start-page: 1565 year: 2013 ident: 10.1016/j.ejor.2025.07.024_b60 article-title: S-Race: A multi-objective racing algorithm – year: 1999 ident: 10.1016/j.ejor.2025.07.024_b58 – start-page: 142 year: 2009 ident: 10.1016/j.ejor.2025.07.024_b3 article-title: A gender-based genetic algorithm for the automatic configuration of algorithms – volume: vol. 12831 start-page: 11 year: 2021 ident: 10.1016/j.ejor.2025.07.024_b2 article-title: PyDGGA: Distributed GGA for automatic configuration – ident: 10.1016/j.ejor.2025.07.024_b26 doi: 10.1145/1570256.1570301 – ident: 10.1016/j.ejor.2025.07.024_b36 doi: 10.1145/3377930.3390185 – year: 2020 ident: 10.1016/j.ejor.2025.07.024_b4 – start-page: 11659 year: 2023 ident: 10.1016/j.ejor.2025.07.024_b28 article-title: Formalizing preferences over runtime distributions – ident: 10.1016/j.ejor.2025.07.024_b53 doi: 10.1145/3520304.3528998 – start-page: 39 year: 2019 ident: 10.1016/j.ejor.2025.07.024_b9 article-title: Core-boosted linear search for incomplete MaxSAT – start-page: 32 year: 2016 ident: 10.1016/j.ejor.2025.07.024_b13 article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework – start-page: 108 year: 2007 ident: 10.1016/j.ejor.2025.07.024_b8 article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement |
| SSID | ssj0001515 |
| Score | 2.4986684 |
| Snippet | Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 577 |
| SubjectTerms | Combinatorial optimization Evolutionary computations Integer programming Machine learning |
| Title | A method for the automated configuration of anytime portfolios of algorithms |
| URI | https://dx.doi.org/10.1016/j.ejor.2025.07.024 |
| Volume | 329 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001515 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddO8b6sI9so-22ooe-FY9E1of9GErKPkoZLIW8GcmSOodgFzcZ_fN7smQl7bqxPuzFBEGUWPfj7ufz3e8QOqLSkFwzngBdZQnlepRIyUQiUqrAOXLFdGfpM3F-ns1m-fdQkHndjRMQdZ3d3ORX_9XUsAbGdq2zjzB33BQW4DMYHa5gdrj-k-HHYSp0LCCUq2UDvNS4_rXaVperNtJE8ARuuPyxI-G2WVRNV9ghF5dNWy1_BiHzh_L2gcPCQttnE4NsUEwv_wA4eE3fyaKSkbpPIQ6HCrNvEJTrzbQD4eu6q77dSoiEEN942bvSNGQvqo1HWu8YWRjW4mMs8yNCf3PfPpMw_2TmjdNqJawTVvVN1ne1su_FsFhZ2BetzQu3R-H2KIaigD2eoB0iWA6eb2f8ZTL7GuO1o3Tdu6ZwQ6G1ylcB3v8nD9OXDUoyfYVehGcJPPYYeI22TD1Az_pWhgF62Y_swMGDD9Duhv7kG3Q2xh4rGLCCASs4YgXfwQpuLA5YwWusdKsRK2_RxelkevI5CeM1khL4Ck14rii1uU1ZpoG25czKEVVlaiUZGi6FZFy46QpaKpkxaZVw4pWlNsIKTYlK36HtuqnNHsKcZBqY95BbnlGd5WokpChLQXiZGZXKfXTcn1px5VVUij9bah-x_mCLwAM9vysAJ3_53sGjfuU9er7G9Qe0vWxX5iN6Wv5aVtftYQDJLUNQgNg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+the+automated+configuration+of+anytime+portfolios+of+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Schede%2C+Elias&rft.au=Tierney%2C+Kevin&rft.date=2026-03-01&rft.issn=0377-2217&rft.volume=329&rft.issue=2&rft.spage=577&rft.epage=590&rft_id=info:doi/10.1016%2Fj.ejor.2025.07.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2025_07_024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |