Sustainable ductile iron design: Leveraging machine learning and genetic algorithms for critical raw materials reduction

One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 163; s. 113117
Hlavní autori: Ferro, P., Spiller, S., Tang, K., Berto, F., Bonollo, F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2026
Predmet:
ISSN:0952-1976
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of critical raw materials, updated every three years, and is strongly committed to developing strategies to mitigate these supply risks. Although ductile iron is a strategic material for mass production, offering low cost and high mechanical performance, its production requires critical raw materials, as well, such as Ti, Mg, Nb, and Sb, among others. To address this issue, researchers are exploring substitutes that could replace critical raw materials in ductile iron's composition without compromising or potentially even improving its mechanical properties. In this work, a deep neural networks-based model has been developed to assess the mechanical properties of ductile cast iron based on its chemical composition. The model has then been integrated with a genetic algorithm to optimize the chemical composition of the alloy in a critical raw material perspective, while maintaining equivalent mechanical performance. Three case studies were presented to illustrate the potentialities of the proposed approach. [Display omitted] •A hybrid DNN-GA framework was developed to design ductile iron alloys under CRM constraints.•The DNN predicts UTS, YS, and Elongation with high accuracy (R > 0.96).•The GA minimizes the Alloy Criticality Index while preserving mechanical properties.•The model supports sustainable alloy design aligned with circular economy goals.•Novel approach supports development of sustainable alloys with reduced CRM reliance.
AbstractList One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of critical raw materials, updated every three years, and is strongly committed to developing strategies to mitigate these supply risks. Although ductile iron is a strategic material for mass production, offering low cost and high mechanical performance, its production requires critical raw materials, as well, such as Ti, Mg, Nb, and Sb, among others. To address this issue, researchers are exploring substitutes that could replace critical raw materials in ductile iron's composition without compromising or potentially even improving its mechanical properties. In this work, a deep neural networks-based model has been developed to assess the mechanical properties of ductile cast iron based on its chemical composition. The model has then been integrated with a genetic algorithm to optimize the chemical composition of the alloy in a critical raw material perspective, while maintaining equivalent mechanical performance. Three case studies were presented to illustrate the potentialities of the proposed approach. [Display omitted] •A hybrid DNN-GA framework was developed to design ductile iron alloys under CRM constraints.•The DNN predicts UTS, YS, and Elongation with high accuracy (R > 0.96).•The GA minimizes the Alloy Criticality Index while preserving mechanical properties.•The model supports sustainable alloy design aligned with circular economy goals.•Novel approach supports development of sustainable alloys with reduced CRM reliance.
ArticleNumber 113117
Author Bonollo, F.
Tang, K.
Berto, F.
Spiller, S.
Ferro, P.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0001-8008-1557
  surname: Ferro
  fullname: Ferro, P.
  email: paolo.ferro@unipd.it
  organization: Department of Engineering and Management, University of Padova, Vicenza, Italy
– sequence: 2
  givenname: S.
  surname: Spiller
  fullname: Spiller, S.
  organization: Department of Engineering and Management, University of Padova, Vicenza, Italy
– sequence: 3
  givenname: K.
  surname: Tang
  fullname: Tang, K.
  organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
– sequence: 4
  givenname: F.
  surname: Berto
  fullname: Berto, F.
  organization: Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Rome, Italy
– sequence: 5
  givenname: F.
  surname: Bonollo
  fullname: Bonollo, F.
  organization: Department of Engineering and Management, University of Padova, Vicenza, Italy
BookMark eNqFkMtOwzAURL0oEm3hF5B_IMGPJI1ZgSpeUiUWwNry4ya9VepUdlrg70kprFnNaKSZe3VmZBL6AIRccZZzxqvrTQ6hNbudwVwwUeacS84XEzJlqhQZV4vqnMxS2jDGZF1UU_L5uk-DwWBsB9Tv3YCjYuwD9ZCwDTd0BQeIpsXQ0q1xawxAOzAxHAMTPG0hwICOmq7tIw7rbaJNH6kbPTrT0Wg-xuIAEU2XaISfI324IGfNGMDlr87J-8P92_IpW708Pi_vVpkTXPBM-do2suYL5_hoisaqiouiEIWsfWmdqsBXUpVGCWvBG2sk96KpQFkpHQM5J9Vp18U-pQiN3kXcmvilOdNHZnqj_5jpIzN9YjYWb09FGL87IESdHEJw4DGCG7Tv8b-Jby2zf_8
Cites_doi 10.1016/j.jmatprotec.2013.03.012
10.1016/j.matdes.2019.107848
10.1016/j.matdes.2004.11.027
10.24874/ti.2020.42.01.01
10.3390/recycling4040044
10.1016/j.matdes.2025.114494
10.1016/S0924-0136(00)00514-8
10.1016/j.commatsci.2023.112449
10.1016/j.resconrec.2018.11.017
10.1088/1402-4896/ad0810
10.1007/s00170-016-8510-y
10.1016/j.jallcom.2023.169546
10.1016/j.ifacol.2024.09.300
10.3390/ma15082884
10.1080/19397038.2020.1719445
10.1038/nature21359
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.113117
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_113117
S0952197625031483
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c2121-9d8bf3817cc1bf34fb9612442438d5bc96ed6395a92bbedaba31d2f6e9b33c0e3
ISSN 0952-1976
IngestDate Thu Nov 27 01:03:00 EST 2025
Wed Dec 10 14:29:44 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Critical raw materials
Alloy optimization
Genetic algorithm
Machine learning
Cast iron
Sustainable materials design
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2121-9d8bf3817cc1bf34fb9612442438d5bc96ed6395a92bbedaba31d2f6e9b33c0e3
ORCID 0000-0001-8008-1557
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_113117
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_113117
PublicationCentury 2000
PublicationDate 2026-01-01
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ferro, Bonollo (bib6) 2019; 4
Mancheri, Sprecher, Bailey, Ge, Tukker (bib17) 2019; 142
Zmak, Filetin (bib23) 2009
Mousavi Anijdan, Bahrami, Madaah Hosseini, Shafyei (bib18) 2006; 27
Santos, Nieves, Penya, Bringas (bib19) 2009
Lundberg, Lee (bib16) 2017
Ferro, Bonollo, Cruz (bib9) 2021; 14
Calcaterra, Campana, Tomesani (bib2) 2000; 104
Grohol, Veeh (bib4) 2023
Gu, Yao, Li, Qu, Bu, Bai, Liu, Lai, Zhu (bib12) 2023; 98
Ali, Giurco, Arndt (bib1) 2017; 543
Geological Survey (bib11) 2021
Liu, Zhang, Zhang, Chang, Li, Wang, Liu, Yu (bib15) 2023; 229
Wilk-Kołodziejczyk, Jaśkowiec, Małysza, Bitka (bib22) 2024; vol. 257
Ferro, Bonollo, Cruz (bib8) 2020; 51
Lee, Song, Kim, Kim, Seol, Cho, Choi (bib14) 2023; 947
Fragassa, Babic, Domingues dos Santos (bib10) 2020; 42
Ferro, Bonollo (bib5) 2019; 177
Suh, Jang, Suh, Kim (bib20) 2025; 257
Wilk-Kołodziejczyk, Regulski, Gumienny (bib21) 2016; 87
Ferro, Fabrizi, Cervo, Carollo (bib7) 2013; 213
Dettori, Zaccara, Laid, Matino, Vannucci, Colla, Bontempi, Forlani (bib3) 2024; 58
Jaśkowiec, Wilk-Kołodziejczyk (bib13) 2022; 15
Ferro (10.1016/j.engappai.2025.113117_bib7) 2013; 213
Grohol (10.1016/j.engappai.2025.113117_bib4) 2023
Ferro (10.1016/j.engappai.2025.113117_bib5) 2019; 177
Ferro (10.1016/j.engappai.2025.113117_bib9) 2021; 14
Wilk-Kołodziejczyk (10.1016/j.engappai.2025.113117_bib21) 2016; 87
Ali (10.1016/j.engappai.2025.113117_bib1) 2017; 543
Gu (10.1016/j.engappai.2025.113117_bib12) 2023; 98
Mancheri (10.1016/j.engappai.2025.113117_bib17) 2019; 142
Mousavi Anijdan (10.1016/j.engappai.2025.113117_bib18) 2006; 27
Ferro (10.1016/j.engappai.2025.113117_bib6) 2019; 4
Lundberg (10.1016/j.engappai.2025.113117_bib16) 2017
Santos (10.1016/j.engappai.2025.113117_bib19) 2009
Dettori (10.1016/j.engappai.2025.113117_bib3) 2024; 58
Fragassa (10.1016/j.engappai.2025.113117_bib10) 2020; 42
Wilk-Kołodziejczyk (10.1016/j.engappai.2025.113117_bib22) 2024; vol. 257
Ferro (10.1016/j.engappai.2025.113117_bib8) 2020; 51
Geological Survey (10.1016/j.engappai.2025.113117_bib11)
Lee (10.1016/j.engappai.2025.113117_bib14) 2023; 947
Zmak (10.1016/j.engappai.2025.113117_bib23) 2009
Jaśkowiec (10.1016/j.engappai.2025.113117_bib13) 2022; 15
Suh (10.1016/j.engappai.2025.113117_bib20) 2025; 257
Calcaterra (10.1016/j.engappai.2025.113117_bib2) 2000; 104
Liu (10.1016/j.engappai.2025.113117_bib15) 2023; 229
References_xml – volume: 42
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib10
  article-title: Machine learning approaches to predict the hardness of cast iron
  publication-title: Tribol. Ind.
– volume: 27
  start-page: 605
  year: 2006
  end-page: 609
  ident: bib18
  article-title: Using genetic algorithm and artificial neural network analyses to design an Al–Si casting alloy of minimum porosity
  publication-title: Mater. Des.
– year: 2009
  ident: bib23
  article-title: Mechanical properties of ductile cast iron determined by neural networks
  publication-title: , Sharjah
– volume: 51
  start-page: 81
  year: 2020
  end-page: 91
  ident: bib8
  article-title: Alloy substitution in a critical raw materials perspective
  publication-title: Frat. Ed. Integrità Strutt.
– volume: 257
  year: 2025
  ident: bib20
  article-title: Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm (2025)
  publication-title: Mater. Des.
– volume: 543
  start-page: 367
  year: 2017
  end-page: 372
  ident: bib1
  article-title: Mineral supply for sustainable development requires resource governance
  publication-title: Nature
– year: 2023
  ident: bib4
  article-title: Study on the Critical Raw Materials for the EU 2023 – Final Report
– year: 2021
  ident: bib11
  article-title: Community for data integration science topics
– volume: 142
  start-page: 101
  year: 2019
  end-page: 112
  ident: bib17
  article-title: Effect of Chinese policies on rare earth supply chain resilience
  publication-title: Resour. Conserv. Recycl.
– volume: 4
  start-page: 44
  year: 2019
  ident: bib6
  article-title: Design for recycling in a critical raw materials perspective
  publication-title: Recycling
– volume: 14
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib9
  article-title: Product design from an environmental and critical raw materials perspective
  publication-title: Int. J. Sustain. Eng.
– start-page: 4536
  year: 2009
  end-page: 4541
  ident: bib19
  article-title: Machine-learning-based mechanical properties prediction in foundry production
  publication-title: Proceedings of ICCassiCE Fukuoka, Japan
– volume: 104
  start-page: 74
  year: 2000
  end-page: 80
  ident: bib2
  article-title: Prediction of mechanical properties in spheroidal cast iron by neural networks
  publication-title: J. Mater. Process. Technol.
– volume: 947
  year: 2023
  ident: bib14
  article-title: Genetic design of new aluminum alloys to overcome strength-ductility trade-off dilemma
  publication-title: J. Alloys Compd.
– volume: 98
  year: 2023
  ident: bib12
  article-title: Mechanical properties prediction of ferrite ductile iron via machine learning
  publication-title: Physica Scripta
– volume: 87
  start-page: 1077
  year: 2016
  end-page: 1093
  ident: bib21
  article-title: Comparative analysis of the properties of nodular cast iron with carbides and austempered ductile iron using machine learning and support vector machine
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 15
  start-page: 2884
  year: 2022
  ident: bib13
  article-title: Assessment of the quality and mechanical parameters of castings using machine learning methods
  publication-title: Materials (Basel)
– volume: vol. 257
  year: 2024
  ident: bib22
  article-title: Models supporting cast iron production based on artificial intelligence and prediction methods
  publication-title: Digital Transformation: Intelligent Systems Reference Library
– volume: 58
  start-page: 113
  year: 2024
  end-page: 118
  ident: bib3
  article-title: Machine learning models to forecast defects occurrence on foundry products
  publication-title: IFAC-PapersOnLine
– volume: 229
  year: 2023
  ident: bib15
  article-title: Composition design of high-performance copper alloy by coupling artificial neural network and genetic algorithm
  publication-title: Comput. Mater. Sci.
– year: 2017
  ident: bib16
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems 30, Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017)
– volume: 177
  year: 2019
  ident: bib5
  article-title: Materials selection in a critical raw materials perspective
  publication-title: Mater. Des.
– volume: 213
  start-page: 1601
  year: 2013
  end-page: 1608
  ident: bib7
  article-title: Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy-section near-eutectic ductile iron castings
  publication-title: J. Mater. Process. Technol.
– volume: 213
  start-page: 1601
  year: 2013
  ident: 10.1016/j.engappai.2025.113117_bib7
  article-title: Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy-section near-eutectic ductile iron castings
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.03.012
– volume: 51
  start-page: 81
  year: 2020
  ident: 10.1016/j.engappai.2025.113117_bib8
  article-title: Alloy substitution in a critical raw materials perspective
  publication-title: Frat. Ed. Integrità Strutt.
– year: 2017
  ident: 10.1016/j.engappai.2025.113117_bib16
  article-title: A unified approach to interpreting model predictions
– volume: 177
  year: 2019
  ident: 10.1016/j.engappai.2025.113117_bib5
  article-title: Materials selection in a critical raw materials perspective
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107848
– volume: 27
  start-page: 605
  year: 2006
  ident: 10.1016/j.engappai.2025.113117_bib18
  article-title: Using genetic algorithm and artificial neural network analyses to design an Al–Si casting alloy of minimum porosity
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2004.11.027
– year: 2009
  ident: 10.1016/j.engappai.2025.113117_bib23
  article-title: Mechanical properties of ductile cast iron determined by neural networks
– volume: 42
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2025.113117_bib10
  article-title: Machine learning approaches to predict the hardness of cast iron
  publication-title: Tribol. Ind.
  doi: 10.24874/ti.2020.42.01.01
– volume: 4
  start-page: 44
  issue: 4
  year: 2019
  ident: 10.1016/j.engappai.2025.113117_bib6
  article-title: Design for recycling in a critical raw materials perspective
  publication-title: Recycling
  doi: 10.3390/recycling4040044
– volume: 257
  year: 2025
  ident: 10.1016/j.engappai.2025.113117_bib20
  article-title: Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm (2025)
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2025.114494
– volume: vol. 257
  year: 2024
  ident: 10.1016/j.engappai.2025.113117_bib22
  article-title: Models supporting cast iron production based on artificial intelligence and prediction methods
– volume: 104
  start-page: 74
  year: 2000
  ident: 10.1016/j.engappai.2025.113117_bib2
  article-title: Prediction of mechanical properties in spheroidal cast iron by neural networks
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(00)00514-8
– volume: 229
  year: 2023
  ident: 10.1016/j.engappai.2025.113117_bib15
  article-title: Composition design of high-performance copper alloy by coupling artificial neural network and genetic algorithm
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2023.112449
– start-page: 4536
  year: 2009
  ident: 10.1016/j.engappai.2025.113117_bib19
  article-title: Machine-learning-based mechanical properties prediction in foundry production
– volume: 142
  start-page: 101
  year: 2019
  ident: 10.1016/j.engappai.2025.113117_bib17
  article-title: Effect of Chinese policies on rare earth supply chain resilience
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.11.017
– volume: 98
  year: 2023
  ident: 10.1016/j.engappai.2025.113117_bib12
  article-title: Mechanical properties prediction of ferrite ductile iron via machine learning
  publication-title: Physica Scripta
  doi: 10.1088/1402-4896/ad0810
– volume: 87
  start-page: 1077
  issue: 1–4
  year: 2016
  ident: 10.1016/j.engappai.2025.113117_bib21
  article-title: Comparative analysis of the properties of nodular cast iron with carbides and austempered ductile iron using machine learning and support vector machine
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8510-y
– year: 2023
  ident: 10.1016/j.engappai.2025.113117_bib4
– volume: 947
  year: 2023
  ident: 10.1016/j.engappai.2025.113117_bib14
  article-title: Genetic design of new aluminum alloys to overcome strength-ductility trade-off dilemma
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.169546
– volume: 58
  start-page: 113
  issue: 22
  year: 2024
  ident: 10.1016/j.engappai.2025.113117_bib3
  article-title: Machine learning models to forecast defects occurrence on foundry products
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2024.09.300
– ident: 10.1016/j.engappai.2025.113117_bib11
– volume: 15
  start-page: 2884
  issue: 8
  year: 2022
  ident: 10.1016/j.engappai.2025.113117_bib13
  article-title: Assessment of the quality and mechanical parameters of castings using machine learning methods
  publication-title: Materials (Basel)
  doi: 10.3390/ma15082884
– volume: 14
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.113117_bib9
  article-title: Product design from an environmental and critical raw materials perspective
  publication-title: Int. J. Sustain. Eng.
  doi: 10.1080/19397038.2020.1719445
– volume: 543
  start-page: 367
  year: 2017
  ident: 10.1016/j.engappai.2025.113117_bib1
  article-title: Mineral supply for sustainable development requires resource governance
  publication-title: Nature
  doi: 10.1038/nature21359
SSID ssj0003846
Score 2.444862
Snippet One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113117
SubjectTerms Alloy optimization
Cast iron
Critical raw materials
Genetic algorithm
Machine learning
Sustainable materials design
Title Sustainable ductile iron design: Leveraging machine learning and genetic algorithms for critical raw materials reduction
URI https://dx.doi.org/10.1016/j.engappai.2025.113117
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3oiWh3zgFmWp47zMraBWPKqq0i7S3qL4kbJVSat0W_Y38KsZZ-zElEqAEJdsNJKd9X7f2uOJvxlCXgGkO1rleayLMo1TwWRcw8oa29XFJEzpRvbZ9Q-Kw8NysRBHk8l3r4W5Oi3atlyvxfl_hRpsALaVzv4F3EOnYIB7AB2uADtc_wj4WSiJsrlh4dNq2SLdH9awIYADA6PC8kRf-8OUxlePQMEi9G36RK6nx2fdcvUFkzZEypdF6Opv0HCFo4k6ozEF7U9R_jHPYRS-JO_PHXT9AaW-XEiQETQIbaP45mgavNv3ksXZYJy7UPenwfLWdH1VqGh_GkYzkuvRjEFmM55pwlhlEjOBhWKGaRsnxl-WAIxGnExNewzDq5dTeExmS9cwFIleS689s53bvsEX5LA35LfIZlJkAib5zd0Pe4uPw7rOS5R9-S8T6M1vftrNrk7gvszvk7tu30F3kS8PyMS0D8k9twehboa_AJMv8-Ftj8g6YBR1jKKWURQZ9YaOfKKOT9TziQKfqOMTHflEgU_U84kCn-jAJzrw6TH5vL83f_c-dgU7YgUeEIuFLmVjUz4qxeAmhf95bv3HJOWlzqQSudHgEWe1SKQ0upY1ZzppciMk52rH8Cdkoz1rzVNCNc9UXTSCZYZZcXidStk0usyVhj2HNlvktf9tq3PMy1L5A4snlUejsmhUiMYWER6CynmX6DVWwJzftN3-h7bPyJ2R6M_Jxqq7NC_IbXW1Wl50Lx3JfgBdLKkL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+ductile+iron+design%3A+Leveraging+machine+learning+and+genetic+algorithms+for+critical+raw+materials+reduction&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Ferro%2C+P.&rft.au=Spiller%2C+S.&rft.au=Tang%2C+K.&rft.au=Berto%2C+F.&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=163&rft_id=info:doi/10.1016%2Fj.engappai.2025.113117&rft.externalDocID=S0952197625031483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon