Sustainable ductile iron design: Leveraging machine learning and genetic algorithms for critical raw materials reduction
One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 163; s. 113117 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2026
|
| Predmet: | |
| ISSN: | 0952-1976 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of critical raw materials, updated every three years, and is strongly committed to developing strategies to mitigate these supply risks.
Although ductile iron is a strategic material for mass production, offering low cost and high mechanical performance, its production requires critical raw materials, as well, such as Ti, Mg, Nb, and Sb, among others. To address this issue, researchers are exploring substitutes that could replace critical raw materials in ductile iron's composition without compromising or potentially even improving its mechanical properties. In this work, a deep neural networks-based model has been developed to assess the mechanical properties of ductile cast iron based on its chemical composition. The model has then been integrated with a genetic algorithm to optimize the chemical composition of the alloy in a critical raw material perspective, while maintaining equivalent mechanical performance. Three case studies were presented to illustrate the potentialities of the proposed approach.
[Display omitted]
•A hybrid DNN-GA framework was developed to design ductile iron alloys under CRM constraints.•The DNN predicts UTS, YS, and Elongation with high accuracy (R > 0.96).•The GA minimizes the Alloy Criticality Index while preserving mechanical properties.•The model supports sustainable alloy design aligned with circular economy goals.•Novel approach supports development of sustainable alloys with reduced CRM reliance. |
|---|---|
| AbstractList | One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due to factors like scarcity, geopolitical instability in supplier countries, and lack of substitutes. The European Union maintains a list of critical raw materials, updated every three years, and is strongly committed to developing strategies to mitigate these supply risks.
Although ductile iron is a strategic material for mass production, offering low cost and high mechanical performance, its production requires critical raw materials, as well, such as Ti, Mg, Nb, and Sb, among others. To address this issue, researchers are exploring substitutes that could replace critical raw materials in ductile iron's composition without compromising or potentially even improving its mechanical properties. In this work, a deep neural networks-based model has been developed to assess the mechanical properties of ductile cast iron based on its chemical composition. The model has then been integrated with a genetic algorithm to optimize the chemical composition of the alloy in a critical raw material perspective, while maintaining equivalent mechanical performance. Three case studies were presented to illustrate the potentialities of the proposed approach.
[Display omitted]
•A hybrid DNN-GA framework was developed to design ductile iron alloys under CRM constraints.•The DNN predicts UTS, YS, and Elongation with high accuracy (R > 0.96).•The GA minimizes the Alloy Criticality Index while preserving mechanical properties.•The model supports sustainable alloy design aligned with circular economy goals.•Novel approach supports development of sustainable alloys with reduced CRM reliance. |
| ArticleNumber | 113117 |
| Author | Bonollo, F. Tang, K. Berto, F. Spiller, S. Ferro, P. |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0001-8008-1557 surname: Ferro fullname: Ferro, P. email: paolo.ferro@unipd.it organization: Department of Engineering and Management, University of Padova, Vicenza, Italy – sequence: 2 givenname: S. surname: Spiller fullname: Spiller, S. organization: Department of Engineering and Management, University of Padova, Vicenza, Italy – sequence: 3 givenname: K. surname: Tang fullname: Tang, K. organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China – sequence: 4 givenname: F. surname: Berto fullname: Berto, F. organization: Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Rome, Italy – sequence: 5 givenname: F. surname: Bonollo fullname: Bonollo, F. organization: Department of Engineering and Management, University of Padova, Vicenza, Italy |
| BookMark | eNqFkMtOwzAURL0oEm3hF5B_IMGPJI1ZgSpeUiUWwNry4ya9VepUdlrg70kprFnNaKSZe3VmZBL6AIRccZZzxqvrTQ6hNbudwVwwUeacS84XEzJlqhQZV4vqnMxS2jDGZF1UU_L5uk-DwWBsB9Tv3YCjYuwD9ZCwDTd0BQeIpsXQ0q1xawxAOzAxHAMTPG0hwICOmq7tIw7rbaJNH6kbPTrT0Wg-xuIAEU2XaISfI324IGfNGMDlr87J-8P92_IpW708Pi_vVpkTXPBM-do2suYL5_hoisaqiouiEIWsfWmdqsBXUpVGCWvBG2sk96KpQFkpHQM5J9Vp18U-pQiN3kXcmvilOdNHZnqj_5jpIzN9YjYWb09FGL87IESdHEJw4DGCG7Tv8b-Jby2zf_8 |
| Cites_doi | 10.1016/j.jmatprotec.2013.03.012 10.1016/j.matdes.2019.107848 10.1016/j.matdes.2004.11.027 10.24874/ti.2020.42.01.01 10.3390/recycling4040044 10.1016/j.matdes.2025.114494 10.1016/S0924-0136(00)00514-8 10.1016/j.commatsci.2023.112449 10.1016/j.resconrec.2018.11.017 10.1088/1402-4896/ad0810 10.1007/s00170-016-8510-y 10.1016/j.jallcom.2023.169546 10.1016/j.ifacol.2024.09.300 10.3390/ma15082884 10.1080/19397038.2020.1719445 10.1038/nature21359 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.113117 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_113117 S0952197625031483 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c2121-9d8bf3817cc1bf34fb9612442438d5bc96ed6395a92bbedaba31d2f6e9b33c0e3 |
| ISSN | 0952-1976 |
| IngestDate | Thu Nov 27 01:03:00 EST 2025 Wed Dec 10 14:29:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Critical raw materials Alloy optimization Genetic algorithm Machine learning Cast iron Sustainable materials design |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2121-9d8bf3817cc1bf34fb9612442438d5bc96ed6395a92bbedaba31d2f6e9b33c0e3 |
| ORCID | 0000-0001-8008-1557 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_113117 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_113117 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ferro, Bonollo (bib6) 2019; 4 Mancheri, Sprecher, Bailey, Ge, Tukker (bib17) 2019; 142 Zmak, Filetin (bib23) 2009 Mousavi Anijdan, Bahrami, Madaah Hosseini, Shafyei (bib18) 2006; 27 Santos, Nieves, Penya, Bringas (bib19) 2009 Lundberg, Lee (bib16) 2017 Ferro, Bonollo, Cruz (bib9) 2021; 14 Calcaterra, Campana, Tomesani (bib2) 2000; 104 Grohol, Veeh (bib4) 2023 Gu, Yao, Li, Qu, Bu, Bai, Liu, Lai, Zhu (bib12) 2023; 98 Ali, Giurco, Arndt (bib1) 2017; 543 Geological Survey (bib11) 2021 Liu, Zhang, Zhang, Chang, Li, Wang, Liu, Yu (bib15) 2023; 229 Wilk-Kołodziejczyk, Jaśkowiec, Małysza, Bitka (bib22) 2024; vol. 257 Ferro, Bonollo, Cruz (bib8) 2020; 51 Lee, Song, Kim, Kim, Seol, Cho, Choi (bib14) 2023; 947 Fragassa, Babic, Domingues dos Santos (bib10) 2020; 42 Ferro, Bonollo (bib5) 2019; 177 Suh, Jang, Suh, Kim (bib20) 2025; 257 Wilk-Kołodziejczyk, Regulski, Gumienny (bib21) 2016; 87 Ferro, Fabrizi, Cervo, Carollo (bib7) 2013; 213 Dettori, Zaccara, Laid, Matino, Vannucci, Colla, Bontempi, Forlani (bib3) 2024; 58 Jaśkowiec, Wilk-Kołodziejczyk (bib13) 2022; 15 Ferro (10.1016/j.engappai.2025.113117_bib7) 2013; 213 Grohol (10.1016/j.engappai.2025.113117_bib4) 2023 Ferro (10.1016/j.engappai.2025.113117_bib5) 2019; 177 Ferro (10.1016/j.engappai.2025.113117_bib9) 2021; 14 Wilk-Kołodziejczyk (10.1016/j.engappai.2025.113117_bib21) 2016; 87 Ali (10.1016/j.engappai.2025.113117_bib1) 2017; 543 Gu (10.1016/j.engappai.2025.113117_bib12) 2023; 98 Mancheri (10.1016/j.engappai.2025.113117_bib17) 2019; 142 Mousavi Anijdan (10.1016/j.engappai.2025.113117_bib18) 2006; 27 Ferro (10.1016/j.engappai.2025.113117_bib6) 2019; 4 Lundberg (10.1016/j.engappai.2025.113117_bib16) 2017 Santos (10.1016/j.engappai.2025.113117_bib19) 2009 Dettori (10.1016/j.engappai.2025.113117_bib3) 2024; 58 Fragassa (10.1016/j.engappai.2025.113117_bib10) 2020; 42 Wilk-Kołodziejczyk (10.1016/j.engappai.2025.113117_bib22) 2024; vol. 257 Ferro (10.1016/j.engappai.2025.113117_bib8) 2020; 51 Geological Survey (10.1016/j.engappai.2025.113117_bib11) Lee (10.1016/j.engappai.2025.113117_bib14) 2023; 947 Zmak (10.1016/j.engappai.2025.113117_bib23) 2009 Jaśkowiec (10.1016/j.engappai.2025.113117_bib13) 2022; 15 Suh (10.1016/j.engappai.2025.113117_bib20) 2025; 257 Calcaterra (10.1016/j.engappai.2025.113117_bib2) 2000; 104 Liu (10.1016/j.engappai.2025.113117_bib15) 2023; 229 |
| References_xml | – volume: 42 start-page: 1 year: 2020 end-page: 9 ident: bib10 article-title: Machine learning approaches to predict the hardness of cast iron publication-title: Tribol. Ind. – volume: 27 start-page: 605 year: 2006 end-page: 609 ident: bib18 article-title: Using genetic algorithm and artificial neural network analyses to design an Al–Si casting alloy of minimum porosity publication-title: Mater. Des. – year: 2009 ident: bib23 article-title: Mechanical properties of ductile cast iron determined by neural networks publication-title: , Sharjah – volume: 51 start-page: 81 year: 2020 end-page: 91 ident: bib8 article-title: Alloy substitution in a critical raw materials perspective publication-title: Frat. Ed. Integrità Strutt. – volume: 257 year: 2025 ident: bib20 article-title: Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm (2025) publication-title: Mater. Des. – volume: 543 start-page: 367 year: 2017 end-page: 372 ident: bib1 article-title: Mineral supply for sustainable development requires resource governance publication-title: Nature – year: 2023 ident: bib4 article-title: Study on the Critical Raw Materials for the EU 2023 – Final Report – year: 2021 ident: bib11 article-title: Community for data integration science topics – volume: 142 start-page: 101 year: 2019 end-page: 112 ident: bib17 article-title: Effect of Chinese policies on rare earth supply chain resilience publication-title: Resour. Conserv. Recycl. – volume: 4 start-page: 44 year: 2019 ident: bib6 article-title: Design for recycling in a critical raw materials perspective publication-title: Recycling – volume: 14 start-page: 1 year: 2021 end-page: 11 ident: bib9 article-title: Product design from an environmental and critical raw materials perspective publication-title: Int. J. Sustain. Eng. – start-page: 4536 year: 2009 end-page: 4541 ident: bib19 article-title: Machine-learning-based mechanical properties prediction in foundry production publication-title: Proceedings of ICCassiCE Fukuoka, Japan – volume: 104 start-page: 74 year: 2000 end-page: 80 ident: bib2 article-title: Prediction of mechanical properties in spheroidal cast iron by neural networks publication-title: J. Mater. Process. Technol. – volume: 947 year: 2023 ident: bib14 article-title: Genetic design of new aluminum alloys to overcome strength-ductility trade-off dilemma publication-title: J. Alloys Compd. – volume: 98 year: 2023 ident: bib12 article-title: Mechanical properties prediction of ferrite ductile iron via machine learning publication-title: Physica Scripta – volume: 87 start-page: 1077 year: 2016 end-page: 1093 ident: bib21 article-title: Comparative analysis of the properties of nodular cast iron with carbides and austempered ductile iron using machine learning and support vector machine publication-title: Int. J. Adv. Manuf. Technol. – volume: 15 start-page: 2884 year: 2022 ident: bib13 article-title: Assessment of the quality and mechanical parameters of castings using machine learning methods publication-title: Materials (Basel) – volume: vol. 257 year: 2024 ident: bib22 article-title: Models supporting cast iron production based on artificial intelligence and prediction methods publication-title: Digital Transformation: Intelligent Systems Reference Library – volume: 58 start-page: 113 year: 2024 end-page: 118 ident: bib3 article-title: Machine learning models to forecast defects occurrence on foundry products publication-title: IFAC-PapersOnLine – volume: 229 year: 2023 ident: bib15 article-title: Composition design of high-performance copper alloy by coupling artificial neural network and genetic algorithm publication-title: Comput. Mater. Sci. – year: 2017 ident: bib16 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems 30, Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017) – volume: 177 year: 2019 ident: bib5 article-title: Materials selection in a critical raw materials perspective publication-title: Mater. Des. – volume: 213 start-page: 1601 year: 2013 end-page: 1608 ident: bib7 article-title: Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy-section near-eutectic ductile iron castings publication-title: J. Mater. Process. Technol. – volume: 213 start-page: 1601 year: 2013 ident: 10.1016/j.engappai.2025.113117_bib7 article-title: Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy-section near-eutectic ductile iron castings publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.03.012 – volume: 51 start-page: 81 year: 2020 ident: 10.1016/j.engappai.2025.113117_bib8 article-title: Alloy substitution in a critical raw materials perspective publication-title: Frat. Ed. Integrità Strutt. – year: 2017 ident: 10.1016/j.engappai.2025.113117_bib16 article-title: A unified approach to interpreting model predictions – volume: 177 year: 2019 ident: 10.1016/j.engappai.2025.113117_bib5 article-title: Materials selection in a critical raw materials perspective publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107848 – volume: 27 start-page: 605 year: 2006 ident: 10.1016/j.engappai.2025.113117_bib18 article-title: Using genetic algorithm and artificial neural network analyses to design an Al–Si casting alloy of minimum porosity publication-title: Mater. Des. doi: 10.1016/j.matdes.2004.11.027 – year: 2009 ident: 10.1016/j.engappai.2025.113117_bib23 article-title: Mechanical properties of ductile cast iron determined by neural networks – volume: 42 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.engappai.2025.113117_bib10 article-title: Machine learning approaches to predict the hardness of cast iron publication-title: Tribol. Ind. doi: 10.24874/ti.2020.42.01.01 – volume: 4 start-page: 44 issue: 4 year: 2019 ident: 10.1016/j.engappai.2025.113117_bib6 article-title: Design for recycling in a critical raw materials perspective publication-title: Recycling doi: 10.3390/recycling4040044 – volume: 257 year: 2025 ident: 10.1016/j.engappai.2025.113117_bib20 article-title: Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm (2025) publication-title: Mater. Des. doi: 10.1016/j.matdes.2025.114494 – volume: vol. 257 year: 2024 ident: 10.1016/j.engappai.2025.113117_bib22 article-title: Models supporting cast iron production based on artificial intelligence and prediction methods – volume: 104 start-page: 74 year: 2000 ident: 10.1016/j.engappai.2025.113117_bib2 article-title: Prediction of mechanical properties in spheroidal cast iron by neural networks publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(00)00514-8 – volume: 229 year: 2023 ident: 10.1016/j.engappai.2025.113117_bib15 article-title: Composition design of high-performance copper alloy by coupling artificial neural network and genetic algorithm publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2023.112449 – start-page: 4536 year: 2009 ident: 10.1016/j.engappai.2025.113117_bib19 article-title: Machine-learning-based mechanical properties prediction in foundry production – volume: 142 start-page: 101 year: 2019 ident: 10.1016/j.engappai.2025.113117_bib17 article-title: Effect of Chinese policies on rare earth supply chain resilience publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.11.017 – volume: 98 year: 2023 ident: 10.1016/j.engappai.2025.113117_bib12 article-title: Mechanical properties prediction of ferrite ductile iron via machine learning publication-title: Physica Scripta doi: 10.1088/1402-4896/ad0810 – volume: 87 start-page: 1077 issue: 1–4 year: 2016 ident: 10.1016/j.engappai.2025.113117_bib21 article-title: Comparative analysis of the properties of nodular cast iron with carbides and austempered ductile iron using machine learning and support vector machine publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8510-y – year: 2023 ident: 10.1016/j.engappai.2025.113117_bib4 – volume: 947 year: 2023 ident: 10.1016/j.engappai.2025.113117_bib14 article-title: Genetic design of new aluminum alloys to overcome strength-ductility trade-off dilemma publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169546 – volume: 58 start-page: 113 issue: 22 year: 2024 ident: 10.1016/j.engappai.2025.113117_bib3 article-title: Machine learning models to forecast defects occurrence on foundry products publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2024.09.300 – ident: 10.1016/j.engappai.2025.113117_bib11 – volume: 15 start-page: 2884 issue: 8 year: 2022 ident: 10.1016/j.engappai.2025.113117_bib13 article-title: Assessment of the quality and mechanical parameters of castings using machine learning methods publication-title: Materials (Basel) doi: 10.3390/ma15082884 – volume: 14 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.engappai.2025.113117_bib9 article-title: Product design from an environmental and critical raw materials perspective publication-title: Int. J. Sustain. Eng. doi: 10.1080/19397038.2020.1719445 – volume: 543 start-page: 367 year: 2017 ident: 10.1016/j.engappai.2025.113117_bib1 article-title: Mineral supply for sustainable development requires resource governance publication-title: Nature doi: 10.1038/nature21359 |
| SSID | ssj0003846 |
| Score | 2.444862 |
| Snippet | One of this century's key challenges is ensuring the supply of critical raw materials essential for economic stability. These materials face supply risks due... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 113117 |
| SubjectTerms | Alloy optimization Cast iron Critical raw materials Genetic algorithm Machine learning Sustainable materials design |
| Title | Sustainable ductile iron design: Leveraging machine learning and genetic algorithms for critical raw materials reduction |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.113117 |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3oiWh3zgFmWp47zMraBWPKqq0i7S3qL4kbJVSat0W_Y38KsZZ-zElEqAEJdsNJKd9X7f2uOJvxlCXgGkO1rleayLMo1TwWRcw8oa29XFJEzpRvbZ9Q-Kw8NysRBHk8l3r4W5Oi3atlyvxfl_hRpsALaVzv4F3EOnYIB7AB2uADtc_wj4WSiJsrlh4dNq2SLdH9awIYADA6PC8kRf-8OUxlePQMEi9G36RK6nx2fdcvUFkzZEypdF6Opv0HCFo4k6ozEF7U9R_jHPYRS-JO_PHXT9AaW-XEiQETQIbaP45mgavNv3ksXZYJy7UPenwfLWdH1VqGh_GkYzkuvRjEFmM55pwlhlEjOBhWKGaRsnxl-WAIxGnExNewzDq5dTeExmS9cwFIleS689s53bvsEX5LA35LfIZlJkAib5zd0Pe4uPw7rOS5R9-S8T6M1vftrNrk7gvszvk7tu30F3kS8PyMS0D8k9twehboa_AJMv8-Ftj8g6YBR1jKKWURQZ9YaOfKKOT9TziQKfqOMTHflEgU_U84kCn-jAJzrw6TH5vL83f_c-dgU7YgUeEIuFLmVjUz4qxeAmhf95bv3HJOWlzqQSudHgEWe1SKQ0upY1ZzppciMk52rH8Cdkoz1rzVNCNc9UXTSCZYZZcXidStk0usyVhj2HNlvktf9tq3PMy1L5A4snlUejsmhUiMYWER6CynmX6DVWwJzftN3-h7bPyJ2R6M_Jxqq7NC_IbXW1Wl50Lx3JfgBdLKkL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+ductile+iron+design%3A+Leveraging+machine+learning+and+genetic+algorithms+for+critical+raw+materials+reduction&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Ferro%2C+P.&rft.au=Spiller%2C+S.&rft.au=Tang%2C+K.&rft.au=Berto%2C+F.&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=163&rft_id=info:doi/10.1016%2Fj.engappai.2025.113117&rft.externalDocID=S0952197625031483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |