Computation of optimal controls for non-linear distributed-parameter systems using multivariate spline functions

A computational technique is developed for the solution of optimal control problems for distributed-parameter systems. The method involves an expansion of the state variables in terms of multivariate spline basis functions. The optimal control problem is thereby reduced to a finite-dimensional const...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of systems science Ročník 9; číslo 12; s. 1387 - 1395
Hlavní autoři: CHOU, F. S., SIRISENA, H. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.12.1978
ISSN:0020-7721, 1464-5319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A computational technique is developed for the solution of optimal control problems for distributed-parameter systems. The method involves an expansion of the state variables in terms of multivariate spline basis functions. The optimal control problem is thereby reduced to a finite-dimensional constrained minimization problem that may be solved numerically using standard algorithms. Unlike in previous approaches, the system partial differential equations are satisfied exactly at every stage of the computation without, however, explicitly solving them. This feature results in both a decreased computational load and an increased solution accuracy. A numerical example is presented.
ISSN:0020-7721
1464-5319
DOI:10.1080/00207727808941785