Newton-type methods for nonlinearly constrained programming problems-algorithms and theory

For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of Wilson (Recursive Quadratic Programming) lead to inequality constrained nonlinear subproblems. In the present paper optimization methods are int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 19; číslo 3; s. 397 - 412
Hlavní autoři: Kleinmichel, H., Schönefeld, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Akademic-Verlag 01.01.1988
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of Wilson (Recursive Quadratic Programming) lead to inequality constrained nonlinear subproblems. In the present paper optimization methods are introduced which are also locally and superlinearly convergent, but in contrast to the methods mentioned above the occurring subproblems are systems of linear equations. This results from the fact that the methods proposed are based on Newton's method for solving nonlinear equations.
AbstractList For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of Wilson (Recursive Quadratic Programming) lead to inequality constrained nonlinear subproblems. In the present paper optimization methods are introduced which are also locally and superlinearly convergent, but in contrast to the methods mentioned above the occurring subproblems are systems of linear equations. This results from the fact that the methods proposed are based on Newton's method for solving nonlinear equations.
Author Kleinmichel, H.
Schönefeld, K.
Author_xml – sequence: 1
  givenname: H.
  surname: Kleinmichel
  fullname: Kleinmichel, H.
  organization: Sektion Mathematik , Technische Universität Dresden
– sequence: 2
  givenname: K.
  surname: Schönefeld
  fullname: Schönefeld, K.
  organization: Sektion Mathematik , Technische Universität Dresden
BookMark eNp9kMlKBDEQhoOM4MzoA3jrF4hm6-40eJHBDUQvevHSZOuZSJYhCQz99nYznhQ9VRVV3w_1rcAixGAAuMToCiOOrhGhFHeUc8Q5o7SuT8ASI9JB1rF6AZbzHk4H7Ayscv5EiOCGsCX4eDGHEgMs495U3pRd1LkaYqqmfGeDEcmNlYohlySmUVf7FLdJeG_Ddu6lMz5D4bYx2bLzuRJBV2VnYhrPwekgXDYX33UN3u_v3jaP8Pn14Wlz-wwVwbhA1ZFaNoPAGmFCa92gpjaDkbrTXEmma4y51o1ChijElGwbKVuOlZTKtIgZugb4mKtSzDmZod8n60Uae4z6WU7_S87EtD8YZYsoNob5T_cveXMkbZg0eXGIyem-iNHFNCQRlM09_Rv_AlWhgBU
CitedBy_id crossref_primary_10_1080_02331939208843795
crossref_primary_10_1007_BF00940052
crossref_primary_10_1080_10556788_2021_1977810
crossref_primary_10_1007_BF02677409
crossref_primary_10_1080_10556789508805608
crossref_primary_10_1287_moor_2017_0901
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1988
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1988
DBID AAYXX
CITATION
DOI 10.1080/02331938808843355
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 412
ExternalDocumentID 10_1080_02331938808843355
8843355
GroupedDBID .DC
07G
0R~
123
1TA
4.4
5VS
AAIKQ
AAKBW
ABJNI
ACGEE
ACGEJ
ACGFS
ACIWK
ADCVX
ADXPE
AENEX
AEPSL
AEUMN
AEYOC
AGLEN
AKOOK
ALMA_UNASSIGNED_HOLDINGS
AMXXU
AQTUD
AWYRJ
BCCOT
BPLKW
C06
CS3
DU5
DWIFK
EBS
EJD
H13
HZ~
IVXBP
NA5
NUSFT
O9-
P2P
PQQKQ
TAQ
TDBHL
TFL
TFMCV
TFW
TOXWX
UB9
UU8
V3K
V4Q
.7F
.QJ
0BK
29N
30N
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACTCW
ACTIO
ADGTB
AEISY
AEOZL
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
ALCKM
ALQZU
AMEWO
AMVHM
AQRUH
AVBZW
BLEHA
CAG
CCCUG
CE4
CITATION
COF
CRFIH
DKSSO
DMQIW
E~A
E~B
GTTXZ
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFT
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
ID FETCH-LOGICAL-c211t-c925b6fa1d01235d6065efebd9d8cb4d5118dd6c0e2c04cb76bb781cbbce704e3
IEDL.DBID TFW
ISSN 0233-1934
IngestDate Sat Nov 29 07:53:53 EST 2025
Tue Nov 18 21:31:49 EST 2025
Mon Oct 20 23:40:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c211t-c925b6fa1d01235d6065efebd9d8cb4d5118dd6c0e2c04cb76bb781cbbce704e3
PageCount 16
ParticipantIDs crossref_primary_10_1080_02331938808843355
informaworld_taylorfrancis_310_1080_02331938808843355
crossref_citationtrail_10_1080_02331938808843355
PublicationCentury 1900
PublicationDate 1/1/1988
1988-01-00
PublicationDateYYYYMMDD 1988-01-01
PublicationDate_xml – month: 01
  year: 1988
  text: 1/1/1988
  day: 01
PublicationDecade 1980
PublicationTitle Optimization
PublicationYear 1988
Publisher Akademic-Verlag
Publisher_xml – name: Akademic-Verlag
SSID ssj0021624
Score 1.3157823
Snippet For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms locally superlinearly convergent algorithms
Nonlinear programming algorithms
Primary:65 K 05
Primary:90 C 30
Title Newton-type methods for nonlinearly constrained programming problems-algorithms and theory
URI https://www.tandfonline.com/doi/abs/10.1080/02331938808843355
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxQADb0R5yQMTkkUeTuKMCFExVQxFVCyRfbahUltQkyLx7znHSdUiYIDdl1yci-875_x9hFxozIqJVJYpRBuM8zxiMhacgYktYrk0kVrWYhNZvy-Gw_y-6c0pm7ZKV0NbTxRRr9Xu45aqbDvirjDNYOA4FhMheIwJE1dgRPUuvge9x0W5Faa1pK0bzXA4b_9pfneFlay0wlm6lG162__0c4dsNTCTXvu42CVrZrpHNpfIB_fJE65vTj_YbcJSLyRdUvSITv3NHPMxBQcfnYqE0bRp5ZqgNW10aEomx8-vs1H1Mikp-knrc5EfB-Shdzu4uWON0gIDLAArBnmUqNTKUNdnZzVWNYmxRulcC1BcuzJE6xQCE0HAQWWpUpkIQSkwWcBNfEg66Jw5ItTmxgLisshYwUOplUKMZ8BmMhEWUtklQTvTBTQ05O45xkXYspV-nbYuuVyYvHkOjt8GJ8uvr6jqjQ_rVUqK-Ee74z_anZCNMBfC78qckk41m5szsg7v1aicndcR-Ql9i-A8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt1ife_AkLDbNJtkcRSyKtXioWLyEfWqhrdJEwX_vbB6lFfWg95lkspnsPDL7fQAnGqNiIKSlErMNyljcpMLnjCrjW8zlwkBokZNNRJ0O7_Xiu7LhlpZjla6GtgVQRL5Xu4_bNaOrkbgzjDPoOQ7GhHPmY8Sch4UA46wb6eu2HiYFlxfmpLZOnKI8q_5qfneJmbg0g1o6FW9aa_-1dB1Wy0yTnBeusQFzZrQJK1P4g1vwiFucoxB2fVhScEmnBE0io-JuDvyYKJdBOiIJo0k5zTVEbVJS0aRUDJ5exv3seZgSNJTkRyM_tuG-ddm9uKIl2QJVWANmVMXNQIZWeDo_PquxsAmMNVLHmivJtKtEtA5VwzRVgykZhVJG3FNSKhM1mPF3oIbGmV0gNjZWYWrWNJYzT2gpMc0zykYi4FaFog6NaqkTVSKRu-cYJF4FWPp12epwOlF5LWA4fhMOpt9fkuW9D1sQlST-j3p7f9Q7hqWr7m07aV93bvZh2Ys5L5o0B1DLxm_mEBbVe9ZPx0e5e34CmxHkXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt1ife_AkLCbNJtkcRQ2KUnqoKF7CPrXQ1tJEwX_v7CYpragHvc8kk81k55HZ70PoREFUDLkwREC2QShNWoQHjBKpAwO5XBRyxR3ZRNxus8fHpFPN5uTVWKWtoU0JFOH2avtxj5SpJ-LOIMyA41gUE8ZoAAFzHi04YCxw5276MKm3_Mhx2lpxAvK0_qn53SVmwtIMaOlUuEnX_mnoOlqt8kx8XjrGBprTw020MoU-uIWeYIOzBMK2C4tLJukcg0V4WN7MQh9jafNHSyOhFa5muQagjSsimpzw_vPruFe8DHIMdmJ3MPJjG92nV92La1JRLRAJFWBBZNIKRWS4r9zhWQVlTaiNFipRTAqqbB2iVCQ93ZIelSKOhIiZL4WQOvaoDnZQA4zTuwibRBsJiVlLG0Z9roSAJE9LE_OQGRnxJvLqlc5khUNun6Of-TVc6ddla6LTicqoBOH4TTicfn1Z4TofpqQpyYIf9fb-qHeMljqXaXZ3077dR8t-wljZoTlAjWL8pg_Ronwvevn4yDnnJ-C14wE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton-type+methods+for+nonlinearly+constrained+programming+problems-algorithms+and+theory&rft.jtitle=Optimization&rft.au=Kleinmichel%2C+H.&rft.au=Sch%C3%B6nefeld%2C+K.&rft.date=1988-01-01&rft.pub=Akademic-Verlag&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=19&rft.issue=3&rft.spage=397&rft.epage=412&rft_id=info:doi/10.1080%2F02331938808843355&rft.externalDocID=8843355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon