HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION
Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. Th...
Gespeichert in:
| Veröffentlicht in: | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska Jg. 13; H. 4; S. 85 - 92 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lublin University of Technology
20.12.2023
|
| Schlagworte: | |
| ISSN: | 2083-0157, 2391-6761 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets. |
|---|---|
| AbstractList | Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets. |
| Author | Hamed Alnaish, Zakaria A. Hasoon, Safwan O. |
| Author_xml | – sequence: 1 givenname: Zakaria A. orcidid: 0000-0002-7597-5326 surname: Hamed Alnaish fullname: Hamed Alnaish, Zakaria A. – sequence: 2 givenname: Safwan O. orcidid: 0000-0002-3653-3568 surname: Hasoon fullname: Hasoon, Safwan O. |
| BookMark | eNo9kFFvgjAUhZtlS-acb_sB_QHDtdTS8lgFpAmKQYxxL6SlxbA4cbCX_fshLktucu45N_d7OE_g_tycLQAvGE0JZXz2VqvLsemmM-r5d2DkEh87HvPwfb8jThyEKXsEk66rNaK0H8LcEfiKD_NMBnAu1yI7wH0skhCmm1yu5LvIZbqGIlmmmczjFZyLbRjAPsrFJszgNu4lgHkm1tuo99FuvRg-orQ_plG-F1kIgzAKFzncZGEgh_MzeKjUqbOTPx2DXRTmi9hJ0qVciMQpXYx9p6p8S7guWUk5xpwZ32rGKuP63LNWGUMN6r2vrGHGs8SzrGSs5C7yFOEGkzGQN65p1EdxaetP1f4UjaqLIWjaY6Ha77o82UJp7WpeckKQnlXcKoZmqDKaamN9Ra-s1xurbJuua231z8OoGNovbu0X1_bJL5OCcrA |
| Cites_doi | 10.1007/978-981-33-6835-4_25 10.1109/TSE.2013.11 10.1109/ACCESS.2020.2964321 10.1198/108571105X46642 10.1155/2019/6230953 10.1016/j.mlwa.2021.100108 10.1016/j.infsof.2019.07.003 10.5121/ijdkp.2015.5201 10.1109/CEC.2018.8477975 10.1016/j.eswa.2018.12.033 10.1109/ACCESS.2021.3052149 10.5815/ijmecs.2020.01.03 10.1007/s00521-022-07203-7 10.2307/2529310 10.1016/j.swevo.2021.101022 10.1016/j.compbiomed.2021.104324 10.3390/e23101274 10.1016/j.jss.2021.111026 10.4018/IJOSSP.2019100101 10.3390/app9132764 10.1016/j.advengsoft.2016.01.008 10.1016/j.infsof.2018.10.004 10.3390/math8101821 10.1007/978-981-10-8863-6_9 10.1515/jisys-2022-0228 10.1007/s00607-016-0489-6 10.3390/sym13112166 10.1145/1868328.1868342 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.35784/iapgos.4569 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2391-6761 |
| EndPage | 92 |
| ExternalDocumentID | oai_doaj_org_article_abb2b8c8330b4f8ea7040fdb5bde9a51 10_35784_iapgos_4569 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ Y2W |
| ID | FETCH-LOGICAL-c2119-ff9e38bc7c581187d9eb77fd2986eeadd5d077f9aed7d6e36e7c77c8206a38d13 |
| IEDL.DBID | DOA |
| ISSN | 2083-0157 |
| IngestDate | Fri Oct 03 12:38:40 EDT 2025 Sat Nov 29 01:35:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2119-ff9e38bc7c581187d9eb77fd2986eeadd5d077f9aed7d6e36e7c77c8206a38d13 |
| ORCID | 0000-0002-7597-5326 0000-0002-3653-3568 |
| OpenAccessLink | https://doaj.org/article/abb2b8c8330b4f8ea7040fdb5bde9a51 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_abb2b8c8330b4f8ea7040fdb5bde9a51 crossref_primary_10_35784_iapgos_4569 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-20 |
| PublicationDateYYYYMMDD | 2023-12-20 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska |
| PublicationYear | 2023 |
| Publisher | Lublin University of Technology |
| Publisher_xml | – name: Lublin University of Technology |
| References | 104000 103991 104003 103990 104004 103993 104001 103992 104002 103984 103983 103986 103985 103988 103987 103989 103980 103982 103981 103995 103994 103975 103997 103996 103977 103999 103976 103998 103979 103978 |
| References_xml | – ident: 103978 doi: 10.1007/978-981-33-6835-4_25 – ident: 103996 doi: 10.1109/TSE.2013.11 – ident: 103999 doi: 10.1109/ACCESS.2020.2964321 – ident: 103997 – ident: 103993 doi: 10.1198/108571105X46642 – ident: 103982 doi: 10.1155/2019/6230953 – ident: 103975 doi: 10.1016/j.mlwa.2021.100108 – ident: 104003 doi: 10.1016/j.infsof.2019.07.003 – ident: 103987 doi: 10.5121/ijdkp.2015.5201 – ident: 103981 doi: 10.1109/CEC.2018.8477975 – ident: 104000 doi: 10.1016/j.eswa.2018.12.033 – ident: 103985 doi: 10.1109/ACCESS.2021.3052149 – ident: 103990 doi: 10.5815/ijmecs.2020.01.03 – ident: 103983 doi: 10.1007/s00521-022-07203-7 – ident: 104001 – ident: 103992 doi: 10.2307/2529310 – ident: 103986 doi: 10.1016/j.swevo.2021.101022 – ident: 103998 doi: 10.1016/j.compbiomed.2021.104324 – ident: 103980 doi: 10.3390/e23101274 – ident: 104004 doi: 10.1016/j.jss.2021.111026 – ident: 103976 doi: 10.4018/IJOSSP.2019100101 – ident: 103977 doi: 10.3390/app9132764 – ident: 103994 doi: 10.1016/j.advengsoft.2016.01.008 – ident: 104002 doi: 10.1016/j.infsof.2018.10.004 – ident: 103988 doi: 10.3390/math8101821 – ident: 103989 doi: 10.1007/978-981-10-8863-6_9 – ident: 103984 doi: 10.1515/jisys-2022-0228 – ident: 103995 doi: 10.1007/s00607-016-0489-6 – ident: 103979 doi: 10.3390/sym13112166 – ident: 103991 doi: 10.1145/1868328.1868342 |
| SSID | ssib055055372 ssib044739749 ssib017424439 ssib046627282 ssj0002875805 |
| Score | 2.2558181 |
| Snippet | Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 85 |
| SubjectTerms | binary whale optimization algorithm feature selection software defect prediction taper-shaped transfer function |
| Title | HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION |
| URI | https://doaj.org/article/abb2b8c8330b4f8ea7040fdb5bde9a51 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875805 issn: 2083-0157 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044739749 issn: 2083-0157 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYoAB8RRveYAxkDpJbY8pTUglmlZpKh5L5FcQDOXNyLdz7RRaJhaWRHasSLk5ss-1rs9B6DgQPJIKZr-WCH1rYdbymBK1J00oFYsoJ0I4swma5-z6mg_nrL5sTVgjD9wEzlpqEckUg7xbhjUzggLsai0jqQ0X7vA08SmfS6YASUCzYdma6V2GIYV1d5ZohFb2nMxUXSxNj4LpCdIHt-UEPNrVPxLgKJBvR7SpmrfiMOHZvXi6e3w9BfLBf61nc7L_bn1K19DqlFjiuPmgdbRgJhtoZU5ucBM9Zze2lgZ3enlc3OCrLL5M8GBYwvx167aqcHx5MSh6ZdbHnXiUdDF0lfEwKfAog1sXl0Wcj1Jop-PcVZ9gSCLxaJCWV3GR4G6SJuclhr_a7bnHW2icJuV55k0tFzxlpd68uuYmYFJRFTFrRK65kZTWmnDWNgA6HWkf2lwYTXXbBG1DFaXKisCLgOlWsI0WJ48Ts4OwJJTXWgijAuBkyhcwQDptnFqagLR20cl34KqnRlmjgozEBbhqAlzZAO-ijo3qzxirh-06ACXVFCXVXyjZ-4-X7KNlazZvi1mIf4AW317ezSFaUh9v968vRw6AcO1_Jl9JLtO1 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYBRID+BINARY+WHALE+OPTIMIZATION+ALGORITHM+BASED+ON+TAPER+SHAPED+TRANSFER+FUNCTION+FOR+SOFTWARE+DEFECT+PREDICTION&rft.jtitle=Informatyka%2C+automatyka%2C+pomiary+w+gospodarce+i+ochronie+%C5%9Brodowiska&rft.au=Zakaria+A.+Hamed+Alnaish&rft.au=Safwan+O.+Hasoon&rft.date=2023-12-20&rft.pub=Lublin+University+of+Technology&rft.issn=2083-0157&rft.eissn=2391-6761&rft.volume=13&rft.issue=4&rft_id=info:doi/10.35784%2Fiapgos.4569&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abb2b8c8330b4f8ea7040fdb5bde9a51 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-0157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-0157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-0157&client=summon |