Normalization proofs for the un-typed μμ'-calculus

A long-standing open problem of Parigot has been solved by David and Nour, namely, they gave a syntactical and arithmetical proof of the strong normalization of the untyped μμ'-reduction. In connection with this, we present in this paper a proof of the weak normalization of the μ and μ'-ru...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 5; číslo 4; s. 3702 - 3713
Hlavní autoři: Battyányi, Péter, Nour, Karim
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 2020
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A long-standing open problem of Parigot has been solved by David and Nour, namely, they gave a syntactical and arithmetical proof of the strong normalization of the untyped μμ'-reduction. In connection with this, we present in this paper a proof of the weak normalization of the μ and μ'-rules. The algorithm works by induction on the complexity of the term. Our algorithm does not necessarily give a unique normal form: sometimes we may get different normal forms depending on our choice. We also give a simpler proof of the strong normalization of the same reduction. Our proof is based on a notion of a norm defined on the terms.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020239