Task Allocation and Trajectory Optimization for Multi‐UAV Cargo Systems with Cellular‐Connected Constraints

This paper investigates a multi‐UAV cargo delivery scenario, where each UAV picks up goods from one location and delivers them to another destination while maintaining connectivity with the ground cellular network. Optimizing task assignment and UAV trajectory design to minimize completion time unde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 19; číslo 1
Hlavní autoři: Zhang, Borui, Huang, Kui, Chen, Yujing, Yang, Dingcheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.01.2025
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigates a multi‐UAV cargo delivery scenario, where each UAV picks up goods from one location and delivers them to another destination while maintaining connectivity with the ground cellular network. Optimizing task assignment and UAV trajectory design to minimize completion time under the constraints is a significant challenge. To address this, the approach is structured into two principal phases. First, Dijkstra's algorithm is utilized to derive the shortest paths between points while ensuring communication connectivity meets specific quality constraints. Second, these paths are integrated with a novel hybrid optimization algorithm fusing a genetic algorithm and an ant colony algorithm to solve the coupled task assignment and route planning problem subject to communication and payload limitations. The hybrid approach efficiently balances exploration and exploitation, leading to superior task allocation and route planning. Numerical results show that our proposed method is effective in balancing task allocation and reducing overall completion time by comparing it with other integrated optimization techniques.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-8628
1751-8636
DOI:10.1049/cmu2.70106