Tree-based ensemble regression models for emission prediction of a winter green oil-hydrogen dual-fuel engine with zeolite after-treatment

This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with hydrogen and equipped with a zeolite-based after-treatment system. Extra Trees, Random Forest, Gradient Boosting, Extreme Gradient Boosting...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Renewable energy Ročník 257; s. 124726
Hlavní autori: Josephin J S, Femilda, Subramanian, Balaji, Renjit, E. Jeslin, S, Naveen Venkatesh, Sugumaran, V., Subramanian, Thiyagarajan, Kiani, Farzad, Varuvel, Edwin Geo, Matijošius, Jonas, Kilikevičius, Artūras
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2026
Predmet:
ISSN:0960-1481, 1879-0682
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with hydrogen and equipped with a zeolite-based after-treatment system. Extra Trees, Random Forest, Gradient Boosting, Extreme Gradient Boosting (XGBoost), and AdaBoost are the tree-based ensemble regression models used to predict the emission parameters under limited data conditions. The performance of the models was assessed through 5-fold cross-validation and a 20 % hold-out test method using R-Squared (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as the evaluation metrics. Among the five tree-based regression models Extra Trees Regressor performed better with highest R2 values in the range of 0.99966–0.99974 and the lowest error metrics for all the emission parameters and demonstrates the outstanding robustness and generalization ability of the model. The stronger consistency of extra trees across different test samples was demonstrated by absolute error heatmaps, while the model's accuracy was further validated by comparing actual and predicted values. The study's overall findings demonstrate the potential of tree-based ensemble learning, and extra trees in particular, as a lightweight, accurate and reliable tool for real-time emission prediction in low-carbon dual-fuel systems.
AbstractList This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with hydrogen and equipped with a zeolite-based after-treatment system. Extra Trees, Random Forest, Gradient Boosting, Extreme Gradient Boosting (XGBoost), and AdaBoost are the tree-based ensemble regression models used to predict the emission parameters under limited data conditions. The performance of the models was assessed through 5-fold cross-validation and a 20 % hold-out test method using R-Squared (R 2 ), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as the evaluation metrics. Among the five tree-based regression models Extra Trees Regressor performed better with highest R 2 values in the range of 0.99966–0.99974 and the lowest error metrics for all the emission parameters and demonstrates the outstanding robustness and generalization ability of the model. The stronger consistency of extra trees across different test samples was demonstrated by absolute error heatmaps, while the model's accuracy was further validated by comparing actual and predicted values. The study's overall findings demonstrate the potential of tree-based ensemble learning, and extra trees in particular, as a lightweight, accurate and reliable tool for real-time emission prediction in low-carbon dual-fuel systems.
This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with hydrogen and equipped with a zeolite-based after-treatment system. Extra Trees, Random Forest, Gradient Boosting, Extreme Gradient Boosting (XGBoost), and AdaBoost are the tree-based ensemble regression models used to predict the emission parameters under limited data conditions. The performance of the models was assessed through 5-fold cross-validation and a 20 % hold-out test method using R-Squared (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as the evaluation metrics. Among the five tree-based regression models Extra Trees Regressor performed better with highest R2 values in the range of 0.99966–0.99974 and the lowest error metrics for all the emission parameters and demonstrates the outstanding robustness and generalization ability of the model. The stronger consistency of extra trees across different test samples was demonstrated by absolute error heatmaps, while the model's accuracy was further validated by comparing actual and predicted values. The study's overall findings demonstrate the potential of tree-based ensemble learning, and extra trees in particular, as a lightweight, accurate and reliable tool for real-time emission prediction in low-carbon dual-fuel systems.
ArticleNumber 124726
Author S, Naveen Venkatesh
Sugumaran, V.
Renjit, E. Jeslin
Subramanian, Thiyagarajan
Varuvel, Edwin Geo
Matijošius, Jonas
Josephin J S, Femilda
Kiani, Farzad
Kilikevičius, Artūras
Subramanian, Balaji
Author_xml – sequence: 1
  givenname: Femilda
  orcidid: 0000-0003-0249-9506
  surname: Josephin J S
  fullname: Josephin J S, Femilda
  email: femilda.bai@istinye.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkiye
– sequence: 2
  givenname: Balaji
  surname: Subramanian
  fullname: Subramanian, Balaji
  organization: Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
– sequence: 3
  givenname: E. Jeslin
  surname: Renjit
  fullname: Renjit, E. Jeslin
  organization: Department of Computer Application, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
– sequence: 4
  givenname: Naveen Venkatesh
  surname: S
  fullname: S, Naveen Venkatesh
  organization: School of Mechanical Engineering (SMEC), Vellore Institute of Technology - Chennai Campus, Chennai, India
– sequence: 5
  givenname: V.
  surname: Sugumaran
  fullname: Sugumaran, V.
  organization: School of Mechanical Engineering (SMEC), Vellore Institute of Technology - Chennai Campus, Chennai, India
– sequence: 6
  givenname: Thiyagarajan
  surname: Subramanian
  fullname: Subramanian, Thiyagarajan
  organization: Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, Karnataka, India
– sequence: 7
  givenname: Farzad
  surname: Kiani
  fullname: Kiani, Farzad
  organization: Data Science Application and Research Center (VEBIM), Fatih Sultan Mehmet Vakif University, Istanbul, Türkiye
– sequence: 8
  givenname: Edwin Geo
  surname: Varuvel
  fullname: Varuvel, Edwin Geo
  organization: Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkiye
– sequence: 9
  givenname: Jonas
  surname: Matijošius
  fullname: Matijošius, Jonas
  organization: Institute of Mechanical Science, Vilnius Gediminas Technical University, Plytines Str. 25, 10105, Vilnius, Lithuania
– sequence: 10
  givenname: Artūras
  surname: Kilikevičius
  fullname: Kilikevičius, Artūras
  organization: Institute of Mechanical Science, Vilnius Gediminas Technical University, Plytines Str. 25, 10105, Vilnius, Lithuania
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-115384$$DView record from Swedish Publication Index
BookMark eNp9kM1OAyEURlnURKu-gQtegApTmJluTBr_ExM36pYwcGlpZqABalMfwaeWZoxLwwK4-c6X3DNFEx88IHTF6IxRVl9vZhF8ObOKVmLGKt5U9QSd0UVNCeMtO0XTlDaUMtE2_Ax9v0UA0qkEBoNPMHQ94AirCCm54PEQDPQJ2xAxDG6cbSMYp_PxGSxWeO98hogLA2XierI-mBhW5WN2qid2B33pXjkPJZrX-AtC7zJgZQtGcgSVB_D5Ap1Y1Se4_L3P0fvD_dvtE3l5fXy-Xb4QXTHKSb2Y67ppeGeF6OiCl0XaaqEbpTgHahkXojGNqnVr69a0gltQnVUMzLwVlFXzc0TG3rSH7a6T2-gGFQ8yKCfv3MdShriSfd5JxsS85SXPx7yOIaUI9o9gVB6dy40cncujczk6L9jNiBV_8OkgyqQdeF3cRdBZmuD-L_gBKiaTjA
Cites_doi 10.1016/j.apenergy.2014.10.088
10.1016/j.measurement.2021.109025
10.1016/j.ijhydene.2024.12.238
10.1016/j.epsr.2019.106025
10.1016/j.pecs.2021.100904
10.1016/j.apenergy.2019.04.126
10.1016/j.apenergy.2021.117413
10.1016/j.renene.2019.10.080
10.1016/j.ijhydene.2022.11.101
10.1007/s10098-016-1326-5
10.1016/j.egyr.2022.10.427
10.61435/ijred.2024.60724
10.1016/j.renene.2014.08.075
10.3390/en17225680
10.1016/j.renene.2018.11.062
10.1109/ACCESS.2021.3128749
10.1016/j.asoc.2015.04.059
10.1016/j.enconman.2021.114875
10.1186/s12911-021-01688-3
10.1016/j.applthermaleng.2021.117749
10.1186/s13321-024-00934-w
10.1016/j.applthermaleng.2019.01.101
10.1016/j.jbi.2023.104556
10.1016/j.enconman.2014.07.005
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
DOI 10.1016/j.renene.2025.124726
DatabaseName CrossRef
SwePub
SwePub Articles
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_DiVA_org_ltu_115384
10_1016_j_renene_2025_124726
S0960148125023900
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
ZCA
~02
~G-
~HD
29P
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEGFY
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LY6
LY9
M41
R2-
SAC
SEN
SET
WUQ
ADTPV
AOWAS
ID FETCH-LOGICAL-c2104-693c6774bf55b094158829c7aa44e0f14557d7a6c8f68d854feabfa1ed3850123
ISSN 0960-1481
1879-0682
IngestDate Tue Dec 02 03:10:34 EST 2025
Sat Nov 29 06:52:20 EST 2025
Sat Nov 29 17:14:32 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Dual fuel engine
Ensemble learning algorithms
Machine learning algorithm
Emission prediction
Alternative fuels
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2104-693c6774bf55b094158829c7aa44e0f14557d7a6c8f68d854feabfa1ed3850123
ORCID 0000-0003-0249-9506
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_115384
crossref_primary_10_1016_j_renene_2025_124726
elsevier_sciencedirect_doi_10_1016_j_renene_2025_124726
PublicationCentury 2000
PublicationDate 2026-02-01
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Priya, Feenita, Goel, Manoranjitham, Duraisamy, Subramanian, Ganeshan, JS, Albeshr, Pugazhendhi, Varuvel (bib20) 2025; 141
Vos, Kelly, Sarnyai, Azghadi (bib21) 2023; 148
Bai (bib14) 2023; 341
Rezaei, Shahbakhti, Bahri, Aziz (bib7) 2015; 138
Fu, Yang, Li, Sun, Li, Liu (bib4) 2022; 201
Krishnamoorthi, Malayalamurthi, Sakthivel (bib9) 2019; 134
Tetko, van Deursen, Godin (bib17) 2024; 16
Bai, Shanmugaiah, Sonthalia, Devarajan, Geo Varuvel (bib19) 2023; 48
Varuvel, Seetharaman, Bai, Devarajan, Balasubramanian (bib27) 2023; 283
Liu, Huang, Ulishney, Dumitrescu (bib12) 2021; 300
Dhibi, Mansouri, Bouzrara, Nounou, Nounou (bib24) 2021; 9
Naveen, Rebecca, Moradi Sizkouhi, Esmailifar, Aghaei, Sugumaran (bib18) 2022; 8
Sugumaran, Thangavel, MathanrajVijayaragavan, FemildaJosephin, Varuvel (bib26) 2023
Radhakrishnan, Ramaiyan, Vinayagam, Veerasamy (bib28) 2021; 175
Thiyagarajan, Geo, Martin, Nagalingam (bib29) 2017; 19
Vignesh, Ashok (bib6) 2021; 249
Cocco Mariani, Hennings Och, dos Santos Coelho, Domingues (bib11) 2019; 249
Taghavifar, Taghavifar, Mardani, Mohebbi (bib5) 2014; 87
Han, Williamson, Fong (bib22) 2021; 21
Yang, Yan, Sun, Wang, Zhang, Fu (bib10) 2022; 10
Hosseini, Taghizadeh-Alisaraei, Ghobadian, Abbaszadeh-Mayvan (bib2) 2020; 149
Kiss, Szabó, Kun, Weltsch (bib16) 2024; 17
Sideratos, Ikonomopoulos, Hatziargyriou (bib25) 2020; 178
Le, Thai Duong, Cao, Vang Le (bib15) 2024; 13
Jesu Godwin, Geo Varuvel, Martin (bib23) 2023; 421
Mohammadhassani, Dadvand, Khalilarya, Solimanpur (bib13) 2015; 34
Wong, Wong, Vong, Cheung (bib1) 2015; 74
Esonye, Onukwuli, Ofoefule, Ogah (bib3) 2019; 151
Aghbashlo, Peng, Tabatabaei, Kalogirou, Soltanian, Hosseinzadeh-Bandbafha (bib8) 2021; 85
Vignesh (10.1016/j.renene.2025.124726_bib6) 2021; 249
Wong (10.1016/j.renene.2025.124726_bib1) 2015; 74
Liu (10.1016/j.renene.2025.124726_bib12) 2021; 300
Jesu Godwin (10.1016/j.renene.2025.124726_bib23) 2023; 421
Bai (10.1016/j.renene.2025.124726_bib19) 2023; 48
Rezaei (10.1016/j.renene.2025.124726_bib7) 2015; 138
Kiss (10.1016/j.renene.2025.124726_bib16) 2024; 17
Taghavifar (10.1016/j.renene.2025.124726_bib5) 2014; 87
Mohammadhassani (10.1016/j.renene.2025.124726_bib13) 2015; 34
Esonye (10.1016/j.renene.2025.124726_bib3) 2019; 151
Yang (10.1016/j.renene.2025.124726_bib10) 2022; 10
Naveen (10.1016/j.renene.2025.124726_bib18) 2022; 8
Sideratos (10.1016/j.renene.2025.124726_bib25) 2020; 178
Hosseini (10.1016/j.renene.2025.124726_bib2) 2020; 149
Thiyagarajan (10.1016/j.renene.2025.124726_bib29) 2017; 19
Sugumaran (10.1016/j.renene.2025.124726_bib26) 2023
Fu (10.1016/j.renene.2025.124726_bib4) 2022; 201
Vos (10.1016/j.renene.2025.124726_bib21) 2023; 148
Cocco Mariani (10.1016/j.renene.2025.124726_bib11) 2019; 249
Tetko (10.1016/j.renene.2025.124726_bib17) 2024; 16
Krishnamoorthi (10.1016/j.renene.2025.124726_bib9) 2019; 134
Le (10.1016/j.renene.2025.124726_bib15) 2024; 13
Bai (10.1016/j.renene.2025.124726_bib14) 2023; 341
Radhakrishnan (10.1016/j.renene.2025.124726_bib28) 2021; 175
Varuvel (10.1016/j.renene.2025.124726_bib27) 2023; 283
Aghbashlo (10.1016/j.renene.2025.124726_bib8) 2021; 85
Dhibi (10.1016/j.renene.2025.124726_bib24) 2021; 9
Han (10.1016/j.renene.2025.124726_bib22) 2021; 21
Priya (10.1016/j.renene.2025.124726_bib20) 2025; 141
References_xml – volume: 249
  year: 2021
  ident: bib6
  article-title: Deep neural network model-based global calibration scheme for split injection control map to enhance the characteristics of biofuel powered engine
  publication-title: Energy Convers. Manag.
– volume: 300
  year: 2021
  ident: bib12
  article-title: Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine
  publication-title: Appl. Energy
– volume: 48
  start-page: 23308
  year: 2023
  end-page: 23322
  ident: bib19
  article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine
  publication-title: Int. J. Hydrogen Energy
– volume: 141
  start-page: 585
  year: 2025
  end-page: 597
  ident: bib20
  article-title: Comparative analysis of regression models to predict the performance of the dual fuel engine operating on diesel and hydrogen gas
  publication-title: International Journal of Hydrogen Energy
– volume: 74
  start-page: 640
  year: 2015
  end-page: 647
  ident: bib1
  article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
  publication-title: Renew. Energy
– volume: 9
  start-page: 155622
  year: 2021
  end-page: 155633
  ident: bib24
  article-title: An enhanced ensemble learning-based fault detection and diagnosis for grid-connected PV systems
  publication-title: IEEE Access
– volume: 201
  year: 2022
  ident: bib4
  article-title: Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine
  publication-title: Appl. Therm. Eng.
– volume: 34
  start-page: 139
  year: 2015
  end-page: 150
  ident: bib13
  article-title: Prediction and reduction of diesel engine emissions using a combined ANN-ACO method
  publication-title: Appl. Soft Comput. J.
– volume: 19
  start-page: 1271
  year: 2017
  end-page: 1283
  ident: bib29
  article-title: Simultaneous reduction of NO–smoke–CO2 emission in a biodiesel engine using low-carbon biofuel and exhaust after-treatment system
  publication-title: Clean Technol. Environ. Policy
– volume: 134
  start-page: 579
  year: 2019
  end-page: 602
  ident: bib9
  article-title: Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation
  publication-title: Renew. Energy
– volume: 249
  start-page: 204
  year: 2019
  end-page: 221
  ident: bib11
  article-title: Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models
  publication-title: Appl. Energy
– volume: 87
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib5
  article-title: Modeling the impact of in-cylinder combustion parameters of di engines on soot and NOx emissions at rated EGR levels using ANN approach
  publication-title: Energy Convers. Manag.
– volume: 21
  start-page: 322
  year: 2021
  ident: bib22
  article-title: Improving random forest predictions in small datasets from two-phase sampling designs
  publication-title: BMC Med. Inf. Decis. Making
– volume: 17
  start-page: 5680
  year: 2024
  ident: bib16
  article-title: Prediction of efficiency, performance, and emissions based on a validated simulation model in hydrogen–gasoline dual-fuel internal combustion engines
  publication-title: Energies
– volume: 175
  year: 2021
  ident: bib28
  article-title: A stacking ensemble classification model for detection and classification of power quality disturbances in PV integrated power network
  publication-title: Measurement
– volume: 283
  year: 2023
  ident: bib27
  publication-title: Development of Artificial Neural Network and Response Surface Methodology Model to Optimize the Engine Parameters of Rubber Seed oil–Hydrogen on PCCI Operation
– volume: 421
  year: 2023
  ident: bib23
  article-title: Prediction of combustion, performance, and emission parameters of ethanol powered spark ignition engine using ensemble least squares boosting machine learning algorithms
  publication-title: Clean. Product.
– volume: 341
  year: 2023
  ident: bib14
  article-title: A Machine Learning Approach for Carbon di oxide and Other Emissions Characteristics Prediction in a Low Carbon Biofuel-Hydrogen Dual Fuel Engine
  publication-title: Fuel
– volume: 138
  start-page: 460
  year: 2015
  end-page: 473
  ident: bib7
  article-title: Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks
  publication-title: Appl. Energy
– volume: 148
  year: 2023
  ident: bib21
  article-title: Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices
  publication-title: J. Biomed. Inf.
– volume: 8
  start-page: 14382
  year: 2022
  end-page: 14395
  ident: bib18
  article-title: Automatic detection of visual faults on photovoltaic modules using deep ensemble learning network
  publication-title: Energy Rep.
– volume: 85
  year: 2021
  ident: bib8
  article-title: Machine learning technology in biodiesel research: a review
  publication-title: Prog. Energy Combust. Sci.
– volume: 10
  year: 2022
  ident: bib10
  article-title: An artificial neural network model to predict efficiency and emissions of a gasoline engine
  publication-title: Processes
– volume: 16
  start-page: 139
  year: 2024
  ident: bib17
  article-title: Be aware of overfitting by hyperparameter optimization
  publication-title: J. Cheminf.
– volume: 13
  start-page: 1175
  year: 2024
  end-page: 1190
  ident: bib15
  article-title: Application of supervised machine learning and Taylor diagrams for prognostic analysis of performance and emission characteristics of biogas-powered dual-fuel diesel engine
  publication-title: Int. J. Renew. Energy Dev.
– year: 2023
  ident: bib26
  article-title: Efficacy of Machine Learning Algorithms in Estimating Emissions in a Dual Fuel Compression Ignition Engine Operating on Hydrogen and Diesel
– volume: 149
  start-page: 951
  year: 2020
  end-page: 961
  ident: bib2
  article-title: Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends
  publication-title: Renew. Energy
– volume: 151
  start-page: 100
  year: 2019
  end-page: 114
  ident: bib3
  article-title: Multi-input multi-output (MIMO) ANN and Nelder-Mead’s simplex based modeling of engine performance and combustion emission characteristics of biodiesel-diesel blend in CI diesel engine
  publication-title: Appl. Therm. Eng.
– volume: 178
  year: 2020
  ident: bib25
  article-title: A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks
  publication-title: Elec. Power Syst. Res.
– volume: 138
  start-page: 460
  year: 2015
  ident: 10.1016/j.renene.2025.124726_bib7
  article-title: Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.088
– year: 2023
  ident: 10.1016/j.renene.2025.124726_bib26
– volume: 421
  year: 2023
  ident: 10.1016/j.renene.2025.124726_bib23
  article-title: Prediction of combustion, performance, and emission parameters of ethanol powered spark ignition engine using ensemble least squares boosting machine learning algorithms
  publication-title: Clean. Product.
– volume: 175
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib28
  article-title: A stacking ensemble classification model for detection and classification of power quality disturbances in PV integrated power network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109025
– volume: 141
  start-page: 585
  year: 2025
  ident: 10.1016/j.renene.2025.124726_bib20
  article-title: Comparative analysis of regression models to predict the performance of the dual fuel engine operating on diesel and hydrogen gas
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.12.238
– volume: 178
  year: 2020
  ident: 10.1016/j.renene.2025.124726_bib25
  article-title: A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106025
– volume: 85
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib8
  article-title: Machine learning technology in biodiesel research: a review
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2021.100904
– volume: 10
  year: 2022
  ident: 10.1016/j.renene.2025.124726_bib10
  article-title: An artificial neural network model to predict efficiency and emissions of a gasoline engine
  publication-title: Processes
– volume: 283
  year: 2023
  ident: 10.1016/j.renene.2025.124726_bib27
– volume: 249
  start-page: 204
  year: 2019
  ident: 10.1016/j.renene.2025.124726_bib11
  article-title: Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.126
– volume: 300
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib12
  article-title: Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117413
– volume: 149
  start-page: 951
  year: 2020
  ident: 10.1016/j.renene.2025.124726_bib2
  article-title: Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.080
– volume: 48
  start-page: 23308
  issue: 60
  year: 2023
  ident: 10.1016/j.renene.2025.124726_bib19
  article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.11.101
– volume: 19
  start-page: 1271
  issue: 5
  year: 2017
  ident: 10.1016/j.renene.2025.124726_bib29
  article-title: Simultaneous reduction of NO–smoke–CO2 emission in a biodiesel engine using low-carbon biofuel and exhaust after-treatment system
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1326-5
– volume: 8
  start-page: 14382
  year: 2022
  ident: 10.1016/j.renene.2025.124726_bib18
  article-title: Automatic detection of visual faults on photovoltaic modules using deep ensemble learning network
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.427
– volume: 13
  start-page: 1175
  issue: 6
  year: 2024
  ident: 10.1016/j.renene.2025.124726_bib15
  article-title: Application of supervised machine learning and Taylor diagrams for prognostic analysis of performance and emission characteristics of biogas-powered dual-fuel diesel engine
  publication-title: Int. J. Renew. Energy Dev.
  doi: 10.61435/ijred.2024.60724
– volume: 74
  start-page: 640
  year: 2015
  ident: 10.1016/j.renene.2025.124726_bib1
  article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.08.075
– volume: 17
  start-page: 5680
  issue: 22
  year: 2024
  ident: 10.1016/j.renene.2025.124726_bib16
  article-title: Prediction of efficiency, performance, and emissions based on a validated simulation model in hydrogen–gasoline dual-fuel internal combustion engines
  publication-title: Energies
  doi: 10.3390/en17225680
– volume: 134
  start-page: 579
  year: 2019
  ident: 10.1016/j.renene.2025.124726_bib9
  article-title: Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.062
– volume: 9
  start-page: 155622
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib24
  article-title: An enhanced ensemble learning-based fault detection and diagnosis for grid-connected PV systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3128749
– volume: 34
  start-page: 139
  year: 2015
  ident: 10.1016/j.renene.2025.124726_bib13
  article-title: Prediction and reduction of diesel engine emissions using a combined ANN-ACO method
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.04.059
– volume: 341
  year: 2023
  ident: 10.1016/j.renene.2025.124726_bib14
  article-title: A Machine Learning Approach for Carbon di oxide and Other Emissions Characteristics Prediction in a Low Carbon Biofuel-Hydrogen Dual Fuel Engine
  publication-title: Fuel
– volume: 249
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib6
  article-title: Deep neural network model-based global calibration scheme for split injection control map to enhance the characteristics of biofuel powered engine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114875
– volume: 21
  start-page: 322
  issue: 1
  year: 2021
  ident: 10.1016/j.renene.2025.124726_bib22
  article-title: Improving random forest predictions in small datasets from two-phase sampling designs
  publication-title: BMC Med. Inf. Decis. Making
  doi: 10.1186/s12911-021-01688-3
– volume: 201
  year: 2022
  ident: 10.1016/j.renene.2025.124726_bib4
  article-title: Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117749
– volume: 16
  start-page: 139
  issue: 1
  year: 2024
  ident: 10.1016/j.renene.2025.124726_bib17
  article-title: Be aware of overfitting by hyperparameter optimization
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-024-00934-w
– volume: 151
  start-page: 100
  year: 2019
  ident: 10.1016/j.renene.2025.124726_bib3
  article-title: Multi-input multi-output (MIMO) ANN and Nelder-Mead’s simplex based modeling of engine performance and combustion emission characteristics of biodiesel-diesel blend in CI diesel engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.101
– volume: 148
  year: 2023
  ident: 10.1016/j.renene.2025.124726_bib21
  article-title: Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2023.104556
– volume: 87
  start-page: 1
  year: 2014
  ident: 10.1016/j.renene.2025.124726_bib5
  article-title: Modeling the impact of in-cylinder combustion parameters of di engines on soot and NOx emissions at rated EGR levels using ANN approach
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.07.005
SSID ssj0015874
Score 2.4845166
Snippet This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with...
This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 124726
SubjectTerms Alternative fuels
Drift och underhållsteknik
Dual fuel engine
Emission prediction
Ensemble learning algorithms
Machine learning algorithm
Operation and Maintenance Engineering
Title Tree-based ensemble regression models for emission prediction of a winter green oil-hydrogen dual-fuel engine with zeolite after-treatment
URI https://dx.doi.org/10.1016/j.renene.2025.124726
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-115384
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieckHxCVylaR5OMcCRdDDCqFl1VvkxHY33ZBU2ba78BP4Sfw6ZuK82BWPPXCxKqueOJ2v9sx45jMhL5HbjieuYh7X0HjcY1GScia8BOnTAqmTpL5sIjw85ItF9HE0-tHWwuzysCj4xUW0_q-qhj5QNpbOXkPdnVDogM-gdGhB7dD-m-IrpRhuTtICF1V9wdKoSi1Nvmthrr45M0zfoOO6b13hcU1rOwrrHEkkKmuJOTlWmeXs5KusSniihZVbTG9VDrKRyNDEcb8pzKJT5sJx1uWuDw3fT7CmntdlWqquNuwzd_AEIiusuVUnESLZSd5HCWBdqwRSdJg47WuRi1XWHRKpYpXVm8hsbM0VWszdOLNz7PAFjlVxihb1yTDC4XZJ0X2oMrAZuG3OcNV2Da91s-6ClRKayvsrW4KJTqzGyBBaIDGq64_7r__KwH1pZ-zyFdtUuFVspMQoJTZSbpB9N_QjWFH3px9mi3l3huVzwwHezr4t3KyzC6_O5reG0ZDBtrZ6ju6SO427QqcGZvfISBX3ye0BieUD8r0HHG0BR3vAUQM4CoCjLeBoDzhaaiqoARytAUeHgKMd4KgBHEXA0QZw9BLgHpLP72ZHb96z5oYPlrqO7bEgmqQBOCCJ9v3EjsCYBIcvSkMhPE_ZGkn0QxmKIOU64JL7nlYi0cJRcsJ99AYekb2iLNRjQsHR0I5W3AmV8qRMkkCmjphwKW0cYR8Q1v688doQucR_UusBCVsdxI0xaozMGID1l5GvjMq65yCF-9vseBqX1TLON1twu8HO8J5cc0pPya3-7_GM7G2qrXpObqa7TXZWvWjg9xMn4sKE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-based+ensemble+regression+models+for+emission+prediction+of+a+winter+green+oil-hydrogen+dual-fuel+engine+with+zeolite+after-treatment&rft.jtitle=Renewable+energy&rft.au=Josephin+J+S%2C+Femilda&rft.au=Subramanian%2C+Balaji&rft.au=Renjit%2C+E.+Jeslin&rft.au=S%2C+Naveen+Venkatesh&rft.date=2026-02-01&rft.issn=0960-1481&rft.volume=257&rft.spage=124726&rft_id=info:doi/10.1016%2Fj.renene.2025.124726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2025_124726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon