Comparing BERT Against Traditional Machine Learning Models in Text Classification
The BERT model has arisen as a popular state-of-the-art model in recent years. It is able to cope with NLP tasks such as supervised text classification without human supervision. Its flexibility to cope with any corpus delivering great results has make this approach very popular in academia and indu...
Uložené v:
| Vydané v: | Journal of Computational and Cognitive Engineering Ročník 2; číslo 4; s. 352 - 356 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
15.11.2023
|
| ISSN: | 2810-9570, 2810-9503 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The BERT model has arisen as a popular state-of-the-art model in recent years. It is able to cope with NLP tasks such as supervised text classification without human supervision. Its flexibility to cope with any corpus delivering great results has make this approach very popular in academia and industry. Although, other approaches have been used before successfully. We first present BERT and a review on classical NLP approaches. Then, we empirically test with a suite of different scenarios the behaviour of BERT against traditional TF-IDF vocabulary fed to machine learning models. The purpose of this work is adding empirical evidence to support the use of BERT as a default on NLP tasks. Experiments show the superiority of BERT and its independence of features of the NLP problem such as the language of the text adding empirical evidence to use BERT as a default technique in NLP problems.
Received: 10 March 2023 | Revised: 4 April 2023 | Accepted: 20 April 2023
Conflicts of Interest
The authors declare that they have no conflicts of interest to this work. |
|---|---|
| AbstractList | The BERT model has arisen as a popular state-of-the-art model in recent years. It is able to cope with NLP tasks such as supervised text classification without human supervision. Its flexibility to cope with any corpus delivering great results has make this approach very popular in academia and industry. Although, other approaches have been used before successfully. We first present BERT and a review on classical NLP approaches. Then, we empirically test with a suite of different scenarios the behaviour of BERT against traditional TF-IDF vocabulary fed to machine learning models. The purpose of this work is adding empirical evidence to support the use of BERT as a default on NLP tasks. Experiments show the superiority of BERT and its independence of features of the NLP problem such as the language of the text adding empirical evidence to use BERT as a default technique in NLP problems.
Received: 10 March 2023 | Revised: 4 April 2023 | Accepted: 20 April 2023
Conflicts of Interest
The authors declare that they have no conflicts of interest to this work. |
| Author | Garrido-Merchan, Eduardo C. Gozalo-Brizuela, Roberto Gonzalez-Carvajal, Santiago |
| Author_xml | – sequence: 1 givenname: Eduardo C. surname: Garrido-Merchan fullname: Garrido-Merchan, Eduardo C. – sequence: 2 givenname: Roberto surname: Gozalo-Brizuela fullname: Gozalo-Brizuela, Roberto – sequence: 3 givenname: Santiago surname: Gonzalez-Carvajal fullname: Gonzalez-Carvajal, Santiago |
| BookMark | eNp9kF9LwzAUxYNMcM59Al_yBapp0rTJ4yzzHx2i1Odyk97MQJeOtPjn27tN8UHBp3PhnN_hck7JJPQBCTlP2UVWKMkvTR9ePb7dl-VScMaVUEdkylXKEi2ZmPzcBTsh82HwhklWCJHpdEoey36zhejDml4tn2q6WIMPw0jrCK0ffR-goyuwLz4grRBi2CdXfYvdQH2gNb6PtOxg1-q8hT1wRo4ddAPOv3VGnq-XdXmbVA83d-WiSixnWiUFl9y11jCrUQolhQNVtNamOsMctdm5PLcSDSIIzHJUuXFOgASmC2VSMSP6q9fGfhgiusb68fDBGMF3TcqawzzN33l2rPjFbqPfQPz4l_oEyFZu7g |
| CitedBy_id | crossref_primary_10_1108_APJML_03_2025_0550 crossref_primary_10_1177_14727978251322023 crossref_primary_10_1080_23311975_2025_2487219 crossref_primary_10_1177_14727978251321982 crossref_primary_10_1186_s12302_025_01067_z crossref_primary_10_1108_BFJ_10_2024_1072 crossref_primary_10_1007_s10115_025_02551_x crossref_primary_10_1007_s43621_024_00737_x crossref_primary_10_1021_acs_jchemed_3c00757 crossref_primary_10_1016_j_jclepro_2024_143850 crossref_primary_10_1145_3763002 crossref_primary_10_1109_ACCESS_2025_3610157 crossref_primary_10_23919_JSC_2025_0007 crossref_primary_10_1007_s40615_025_02416_7 crossref_primary_10_1016_j_procs_2024_09_351 crossref_primary_10_1142_S179300572550053X crossref_primary_10_1007_s11192_024_05217_7 crossref_primary_10_1016_j_knosys_2024_111984 crossref_primary_10_1186_s44398_025_00005_6 crossref_primary_10_1016_j_eswa_2025_129552 crossref_primary_10_3390_cancers15204909 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.47852/bonviewJCCE3202838 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2810-9503 |
| EndPage | 356 |
| ExternalDocumentID | 10_47852_bonviewJCCE3202838 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c2098-7252fdcb0c9e53853fa87dcc194e6e9b52f26c5ebeea3e46e86bff3a5a0978b13 |
| ISSN | 2810-9570 |
| IngestDate | Sat Nov 29 03:21:37 EST 2025 Tue Nov 18 20:43:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2098-7252fdcb0c9e53853fa87dcc194e6e9b52f26c5ebeea3e46e86bff3a5a0978b13 |
| OpenAccessLink | https://ojs.bonviewpress.com/index.php/JCCE/article/download/838/394 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_47852_bonviewJCCE3202838 crossref_primary_10_47852_bonviewJCCE3202838 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-15 |
| PublicationDateYYYYMMDD | 2023-11-15 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Computational and Cognitive Engineering |
| PublicationYear | 2023 |
| SSID | ssib050733491 |
| Score | 2.537082 |
| Snippet | The BERT model has arisen as a popular state-of-the-art model in recent years. It is able to cope with NLP tasks such as supervised text classification without... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 352 |
| Title | Comparing BERT Against Traditional Machine Learning Models in Text Classification |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2810-9503 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050733491 issn: 2810-9570 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7ctIdeSktbmvTBHnpzlSraXUl7TIRLKTj04UJuZl8yKkIKihOCD_1x_WWd0UqyEkNoDr0Isx4vWPNpdnc0832EvBdMmhAfJDgrm4BbawKlQx5InliBL5p4nLdiE8npaXp2Jr9OJn_6XpirMqmq9Ppanv9XV8MYOBtbZ-_h7mFSGIDP4HS4gtvh-k-Oz7yyYLWansy-L6bHKzj7X6yRxdwWXeJv3lZQup5cddUqopVtZewCgrVXysQaoq3bdvevXg-izyVi_j0bSpFGLIdDgY9qmsLWwdwhO5PP-ljEZz3NDgejeqPKOjhpis2lK9W29LveWlRg4jZBhqJGv1q5gukPgEehVvU4hREx7OXzTZw-0kUpLAZSeAWRQzceC9k4VEcjRPJR2GWeBbdbwZmnKr-9OPAkFcg2q-sK37p8ybIZisennl3mJhX3rSVyKFyEI1M7zXJ3kgfkYZQIiZF1_nvWxzSBopi8FW4c_qUnv2rn-bg7z2iDNNrpLJ6SJ52L6bGH1jMycdVz8m2AFUVY0Q5WdAQr2sGK9rCiHla0qCjCit6E1Qvy89NskX0OOjmOwEQt62wkotwaHRrp4OkWLFdpYo05ktzFTmr4NoqNgKjgFHM8dmms85wpobBXSB-xl2Svqiv3CuvpkkTDsBHccSOk0nA3eGhZrLQOpd0nUX8PlqbjqkfJlHJ5hwP2yYfhR-eequUu84P7mb8mj7fQfUP21s2le0semat1cdG8a33-F4zyks4 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+BERT+Against+Traditional+Machine+Learning+Models+in+Text+Classification&rft.jtitle=Journal+of+Computational+and+Cognitive+Engineering&rft.au=Garrido-Merchan%2C+Eduardo+C.&rft.au=Gozalo-Brizuela%2C+Roberto&rft.au=Gonzalez-Carvajal%2C+Santiago&rft.date=2023-11-15&rft.issn=2810-9570&rft.eissn=2810-9503&rft.volume=2&rft.issue=4&rft.spage=352&rft.epage=356&rft_id=info:doi/10.47852%2FbonviewJCCE3202838&rft.externalDBID=n%2Fa&rft.externalDocID=10_47852_bonviewJCCE3202838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2810-9570&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2810-9570&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2810-9570&client=summon |