Representing polynomial of ST-CONNECTIVITY

We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník 25:2; číslo Combinatorics
Hlavní autori: Iraids, Jānis, Smotrovs, Juris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Discrete Mathematics & Theoretical Computer Science 29.04.2024
Predmet:
ISSN:1365-8050, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY problem in acyclic quivers (directed acyclic multigraphs). Only monomials corresponding to unions of paths have non-zero coefficients which are $(-1)^D$ where $D$ is an easily computable function of the quiver corresponding to the monomial (it is the number of plane regions in the case of planar graphs). We determine that the number of monomials with non-zero coefficients for the two-dimensional $n \times n$ grid connectivity problem is $2^{\Omega(n^2)}$.
AbstractList We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY problem in acyclic quivers (directed acyclic multigraphs). Only monomials corresponding to unions of paths have non-zero coefficients which are $(-1)^D$ where $D$ is an easily computable function of the quiver corresponding to the monomial (it is the number of plane regions in the case of planar graphs). We determine that the number of monomials with non-zero coefficients for the two-dimensional $n \times n$ grid connectivity problem is $2^{\Omega(n^2)}$.
We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY problem in acyclic quivers (directed acyclic multigraphs). Only monomials corresponding to unions of paths have non-zero coefficients which are $(-1)^D$ where $D$ is an easily computable function of the quiver corresponding to the monomial (it is the number of plane regions in the case of planar graphs). We determine that the number of monomials with non-zero coefficients for the two-dimensional $n \times n$ grid connectivity problem is $2^{\Omega(n^2)}$.
Author Iraids, Jānis
Smotrovs, Juris
Author_xml – sequence: 1
  givenname: Jānis
  surname: Iraids
  fullname: Iraids, Jānis
– sequence: 2
  givenname: Juris
  surname: Smotrovs
  fullname: Smotrovs, Juris
BookMark eNpN0EtLw0AUhuFBKthWV_6BrJXUM5lbZimhaqC0oFFwNUzmUlKSTJnppv9ebUVcnY-zeBbvDE3GMDqEbjEsKC9k-WCHg0kLKQm9QFNMOMtLYDD5t6_QLKUdAC4kFVN09-r20SU3Hrpxm-1DfxzD0Ok-Cz57a_Jqs14vq6b-qJvPa3TpdZ_cze-do_enZVO95KvNc109rnJTgKS5bC1w64EULSnAGIAShLWM0JYaKrznVEDrAGPbSg-6xLIQRGhuMLMGYzJH9dm1Qe_UPnaDjkcVdKdOjxC3SsdDZ3qnMC6F5J4BY5RqpyUnBoT2pWiN0UR8W_dny8SQUnT-z8OgTsnUKZn6SUa-AGSWXqE
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/dmtcs.9934
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_118796f505544aea963c07af87bcca37
10_46298_dmtcs_9934
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c2094-9bd06df032b320cc00807dd534b4c47ff6470be011db9f0a8192737a6c15dc113
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Fri Oct 03 12:44:48 EDT 2025
Sat Nov 29 02:48:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Combinatorics
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2094-9bd06df032b320cc00807dd534b4c47ff6470be011db9f0a8192737a6c15dc113
OpenAccessLink https://doaj.org/article/118796f505544aea963c07af87bcca37
ParticipantIDs doaj_primary_oai_doaj_org_article_118796f505544aea963c07af87bcca37
crossref_primary_10_46298_dmtcs_9934
PublicationCentury 2000
PublicationDate 2024-04-29
PublicationDateYYYYMMDD 2024-04-29
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-29
  day: 29
PublicationDecade 2020
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2024
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.2939875
Snippet We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice...
We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms 05c40, 06b99
computer science - computational complexity
computer science - discrete mathematics
g.2.2
Title Representing polynomial of ST-CONNECTIVITY
URI https://doaj.org/article/118796f505544aea963c07af87bcca37
Volume 25:2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED2hwgADHwVE-agydEIKdWI7jkeoiujQUEFB7RTFXxIStFVbkPj32E5alYmFNYqc6J2te6fzvQfQUqLAiJs0JCqxBQpOdSgMJaFCVBtCuJPI8mYTLMvS0YgPNqy-3J2wUh64BK7t7bATYxM1JaTQhd0wErHCpEzYj2M_R25Zz6qYqvoHMSesnMYjSczTtvpYysWNzcXkV_7ZkOn3-eT-EPYrIhjclj9wBFt6UoeDlclCUJ25Ouz118Kqi2O4fvI3V7X3dwhm0_dvN1Zs15ma4HkYdh6zrNsZ9l57w_EJvNx3h52HsLI7CGVsi6yQC4USZRCOBY6RlI7MMaUoJoJIwoxJCENC2wOpBDeocFJmDLMikRFVMorwKdQm04k-g8CSKspTSnRBBUmoTm2ZFEUGY9emS4RqQGsFQj4rVS1yWw14rHKPVe6wasCdA2j9ipOi9g9sgPIqQPlfATr_j0UuYDe2bMK1cWJ-CbXl_FNfwY78Wr4t5k0f-yZsD3r9wfgH2DKzUg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+polynomial+of+ST-CONNECTIVITY&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=J%C4%81nis+Iraids&rft.au=Juris+Smotrovs&rft.date=2024-04-29&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=25%3A2&rft.issue=Combinatorics&rft_id=info:doi/10.46298%2Fdmtcs.9934&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_118796f505544aea963c07af87bcca37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon