A hybrid approach to joint spectral radius computation

In this paper we propose a new method to determine the joint spectral radius of a finite set of real matrices by verifying that a given family of candidates actually consists of spectrum maximizing products. Our algorithm aims at constructing a finite set-valued tree according to the approach of Möl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications
Hlavní autoři: Mejstrik, Thomas, Reif, Ulrich
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.07.2025
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we propose a new method to determine the joint spectral radius of a finite set of real matrices by verifying that a given family of candidates actually consists of spectrum maximizing products. Our algorithm aims at constructing a finite set-valued tree according to the approach of Möller and Reif using a norm that is constructed in the spirit of the invariant polytope algorithm. This combines the broad range of applicability of the first algorithm with the efficiency of the latter. •Novel approach for joint spectral radius computation.•Algorithm remains rigorous.•Algorithm has more general termination guarantees than classical invariant polytope algorithm.
AbstractList In this paper we propose a new method to determine the joint spectral radius of a finite set of real matrices by verifying that a given family of candidates actually consists of spectrum maximizing products. Our algorithm aims at constructing a finite set-valued tree according to the approach of Möller and Reif using a norm that is constructed in the spirit of the invariant polytope algorithm. This combines the broad range of applicability of the first algorithm with the efficiency of the latter. •Novel approach for joint spectral radius computation.•Algorithm remains rigorous.•Algorithm has more general termination guarantees than classical invariant polytope algorithm.
Author Reif, Ulrich
Mejstrik, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0003-2801-0828
  surname: Mejstrik
  fullname: Mejstrik, Thomas
  email: thomas.mejstrik@gmx.at
  organization: NuHAG, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
– sequence: 2
  givenname: Ulrich
  surname: Reif
  fullname: Reif, Ulrich
  email: reif@mathematik.tu-darmstadt.de
  organization: Fachbereich Mathematik, Technische Universität Darmstadt, Karolinenpl. 5, 64289, Darmstadt, Germany
BookMark eNp9z71qwzAUhmENKTRJewHddAN2j2RZtugUQn8CgS7tLCT5mMgklpGcQu6-Cunc6Zvew3lWZDGGEQl5YlAyYPJ5KI_GlBx4XYIsgYsFWUKeompUfU9WKQ0AIBrgSyI39HCx0XfUTFMMxh3oHOgQ_DjTNKGboznSaDp_TtSF03SezezD-EDuenNM-Pi3a_L99vq1_Sj2n--77WZfOA5KFEIxgbJr60q1rZTKQt83DRMKbWsEtopZ5F1ds7aqpGS2EcIqyRsLNRiOWK0Ju911MaQUsddT9CcTL5qBvmL1oDNWX7EapM7K3LzcGsyP_XiMOjmPo8POxwzSXfD_1L-ArV8W
Cites_doi 10.1016/j.laa.2007.12.027
10.1070/SM2000v191n03ABEH000464
10.1016/j.aim.2010.12.012
10.1137/040606818
10.1090/mcom/3856
10.1137/15M1006945
10.1016/0024-3795(95)90006-3
10.1137/0523059
10.1137/080715718
10.1016/0024-3795(92)90267-E
10.1016/j.laa.2014.08.009
10.1007/s10208-012-9121-0
10.1137/100817851
10.1016/j.laa.2007.07.009
10.1137/110855272
10.1016/0024-3795(93)00052-2
10.1137/S0895479801397846
10.1016/j.laa.2009.09.022
10.1090/S0894-0347-01-00378-2
10.1109/18.904557
10.1145/3408891
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.laa.2025.06.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_laa_2025_06_024
S0024379525002836
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c2094-4914e6d853988669b0ff77149eb8a4e891be2d551833661b744b9627b050a2ee3
ISSN 0024-3795
IngestDate Sat Nov 29 07:43:41 EST 2025
Sat Aug 09 17:32:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pseudo spectral radius
Finite tree algorithm
15-04
Joint spectral radius
Invariant polytope algorithm
90C90
Exact computation
15A60
15A18
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2094-4914e6d853988669b0ff77149eb8a4e891be2d551833661b744b9627b050a2ee3
ORCID 0000-0003-2801-0828
OpenAccessLink https://dx.doi.org/10.1016/j.laa.2025.06.024
ParticipantIDs crossref_primary_10_1016_j_laa_2025_06_024
elsevier_sciencedirect_doi_10_1016_j_laa_2025_06_024
PublicationCentury 2000
PublicationDate 2025-7-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-7-00
PublicationDecade 2020
PublicationTitle Linear algebra and its applications
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guglielmi, Overton (br0320)
Moision, Orlitsky, Siegel (br0100) 2001; 47
Mejstrik (br0260) 2020; 46
Guglielmi, Overton (br0140) 2001; 32
Guglielmi, Protasov (br0170) 2024; 93
Berger, Yang (br0060) 1992; 166
Möller (br0270) 2015
Bousch, Mairesse (br0040) 2002; 15
Rota, Strang (br0310) 1960; 63
Guglielmi, Zennaro (br0190) 2007; 14
Möller, Reif (br0290) 2014; 463
Blondel, Theys, Vladimirov (br0050) 2003; 24
Guglielmi, Protasov (br0150) 2013; 13
Mengi (br0340)
Daubechies, Lagarias (br0080) 1992; 23
Blondel, Tche (br0030) 2013; 64
Hare, Morris, Sidorov, Theys (br0220) 2011; 226
Lagarias, Wang (br0250) 1995; 214
Guglielmi, Zennaro (br0200) 2008; 428
Mejstrik (br0350) 2018
Guglielmi, Wirth, Zennaro (br0180) 2005; 27
Mengi (br0240) 2006
Guglielmi, Lubich (br0130) 2011; 49
Guglielmi, Protasov (br0160) 2016; 37
Hendrickx, Jungers, Vankeerberghen (br0330) 2011
Barabanov (br0020) 1988; 49
Jungers (br0230) 2009
Parrilo, Jadbabaie (br0300) 2008; 428
Cicone, Guglielmi, Serra-Capizzano, Zennaro (br0070) 2010; 432
Ahmadi, Jungers, Parrilo, Roozbehani (br0010) 2011; 52
Wright (br0360) 2002
Trefethen (br0090) 2005
Protasov (br0120) 2000; 191
Guglielmi, Zennaro (br0210) 2009; 31
Gurvits (br0110) 1995; 231
Mejstrik, Protasov (br0280) 2023; 4
Cicone (10.1016/j.laa.2025.06.024_br0070) 2010; 432
Moision (10.1016/j.laa.2025.06.024_br0100) 2001; 47
Rota (10.1016/j.laa.2025.06.024_br0310) 1960; 63
Hare (10.1016/j.laa.2025.06.024_br0220) 2011; 226
Guglielmi (10.1016/j.laa.2025.06.024_br0180) 2005; 27
Möller (10.1016/j.laa.2025.06.024_br0290) 2014; 463
Daubechies (10.1016/j.laa.2025.06.024_br0080) 1992; 23
Gurvits (10.1016/j.laa.2025.06.024_br0110) 1995; 231
Guglielmi (10.1016/j.laa.2025.06.024_br0320)
Guglielmi (10.1016/j.laa.2025.06.024_br0200) 2008; 428
Guglielmi (10.1016/j.laa.2025.06.024_br0130) 2011; 49
Wright (10.1016/j.laa.2025.06.024_br0360)
Blondel (10.1016/j.laa.2025.06.024_br0050) 2003; 24
Mejstrik (10.1016/j.laa.2025.06.024_br0260) 2020; 46
Berger (10.1016/j.laa.2025.06.024_br0060) 1992; 166
Jungers (10.1016/j.laa.2025.06.024_br0230) 2009
Mengi (10.1016/j.laa.2025.06.024_br0240) 2006
Mengi (10.1016/j.laa.2025.06.024_br0340)
Trefethen (10.1016/j.laa.2025.06.024_br0090) 2005
Möller (10.1016/j.laa.2025.06.024_br0270) 2015
Guglielmi (10.1016/j.laa.2025.06.024_br0150) 2013; 13
Blondel (10.1016/j.laa.2025.06.024_br0030) 2013; 64
Guglielmi (10.1016/j.laa.2025.06.024_br0140) 2001; 32
Mejstrik (10.1016/j.laa.2025.06.024_br0280) 2023; 4
Hendrickx (10.1016/j.laa.2025.06.024_br0330) 2011
Guglielmi (10.1016/j.laa.2025.06.024_br0160) 2016; 37
Lagarias (10.1016/j.laa.2025.06.024_br0250) 1995; 214
Guglielmi (10.1016/j.laa.2025.06.024_br0210) 2009; 31
Parrilo (10.1016/j.laa.2025.06.024_br0300) 2008; 428
Protasov (10.1016/j.laa.2025.06.024_br0120) 2000; 191
Ahmadi (10.1016/j.laa.2025.06.024_br0010) 2011; 52
Guglielmi (10.1016/j.laa.2025.06.024_br0170) 2024; 93
Bousch (10.1016/j.laa.2025.06.024_br0040) 2002; 15
Guglielmi (10.1016/j.laa.2025.06.024_br0190) 2007; 14
Barabanov (10.1016/j.laa.2025.06.024_br0020) 1988; 49
Mejstrik (10.1016/j.laa.2025.06.024_br0350)
References_xml – volume: 191
  start-page: 3
  year: 2000
  end-page: 4
  ident: br0120
  article-title: Asymptotic behaviour of the partition function
  publication-title: Sb. Math.
– volume: 428
  start-page: 2265
  year: 2008
  end-page: 2282
  ident: br0200
  article-title: An algorithm for finding extremal polytope norms of matrix families
  publication-title: Linear Algebra Appl.
– volume: 49
  start-page: 3
  year: 2011
  ident: br0130
  article-title: Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking
  publication-title: SIAM J. Numer. Anal.
– volume: 13
  start-page: 37
  year: 2013
  end-page: 39
  ident: br0150
  article-title: Exact computation of joint spectral characteristics of linear operators
  publication-title: Found. Comput. Math.
– year: 2009
  ident: br0230
  article-title: The Joint Spectral Radius. Theory and Applications
  publication-title: Lecture Notes in Control and Information Sciences
– volume: 93
  start-page: 259
  year: 2024
  end-page: 291
  ident: br0170
  article-title: Computing the spectral gap of a family of matrices
  publication-title: Math. Compet.
– volume: 63
  year: 1960
  ident: br0310
  article-title: A note on the joint spectral radius
  publication-title: Kon. Nederl. Acad. Wet. Proc.
– year: 2015
  ident: br0270
  article-title: A New Strategy for Exact Determination of the Joint Spectral Radius
– volume: 46
  year: 2020
  ident: br0260
  article-title: Improved invariant polytope algorithm and applications
  publication-title: ACM Trans. Math. Softw.
– volume: 37
  start-page: 18
  year: 2016
  end-page: 52
  ident: br0160
  article-title: Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 47
  year: 2001
  ident: br0100
  article-title: On codes that avoid specified differences
  publication-title: IEEE Trans. Inf. Theory
– volume: 49
  year: 1988
  ident: br0020
  article-title: Lyapunov indicators of discrete inclusions i-iii
  publication-title: Autom. Remote Control
– volume: 166
  start-page: 21
  year: 1992
  end-page: 27
  ident: br0060
  article-title: Bounded semigroups of matrices
  publication-title: Linear Algebra Appl.
– volume: 52
  start-page: 687
  year: 2011
  end-page: 717
  ident: br0010
  article-title: Joint spectral radius and F-complete graph Lyapunov functions
  publication-title: SIAM J. Control Optim.
– volume: 428
  start-page: 2385
  year: 2008
  end-page: 2402
  ident: br0300
  article-title: Approximation of the joint spectral radius using sum of squares
  publication-title: Linear Algebra Appl.
– volume: 24
  start-page: 963
  year: 2003
  end-page: 970
  ident: br0050
  article-title: An elementary counterexample to the finiteness conjecture
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 214
  year: 1995
  ident: br0250
  article-title: The finiteness conjecture for the generalized spectral radius of a set of matrices
  publication-title: Linear Algebra Appl.
– year: 2006
  ident: br0240
  article-title: Measures for Robust Stability and Controllability
– volume: 15
  start-page: 77
  year: 2002
  end-page: 111
  ident: br0040
  article-title: Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
  publication-title: J. Am. Math. Soc.
– year: 2011
  ident: br0330
  article-title: JSR: a toolbox to compute the joint spectral radius
  publication-title: Conf. On Hybrid Systems: Computation and Control Proc
– volume: 14
  start-page: 729
  year: 2007
  end-page: 766
  ident: br0190
  article-title: Balanced complex polytopes and related vector and matrix norms
  publication-title: J. Convex Anal.
– volume: 463
  start-page: 154
  year: 2014
  end-page: 170
  ident: br0290
  article-title: A tree-based approach to joint spectral radius determination
  publication-title: Linear Algebra Appl.
– volume: 231
  year: 1995
  ident: br0110
  article-title: Stability of discrete linear inclusion
  publication-title: Linear Algebra Appl.
– ident: br0320
  article-title: MATLAB package for approximating the pseudospectral abscissa and pseudospectral radius of a matrix
– year: 2002
  ident: br0360
  article-title: EigTool
– volume: 31
  start-page: 602
  year: 2009
  end-page: 620
  ident: br0210
  article-title: Finding extremal complex polytope norms for families of real matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 226
  start-page: 4667
  year: 2011
  end-page: 4701
  ident: br0220
  article-title: An explicit counterexample to the Lagarias–Wang finiteness conjecture
  publication-title: Adv. Math.
– year: 2018
  ident: br0350
  article-title: t-toolboxes for Matlab
– volume: 4
  year: 2023
  ident: br0280
  article-title: Elliptic polytopes and Lyapunov norms of linear operators
  publication-title: Calcolo
– volume: 27
  start-page: 721
  year: 2005
  end-page: 743
  ident: br0180
  article-title: Complex polytope extremality results for families of matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 432
  start-page: 796
  year: 2010
  end-page: 816
  ident: br0070
  article-title: Finiteness property of pairs of
  publication-title: Linear Algebra Appl.
– year: 2005
  ident: br0090
  article-title: Spectra and Pseudospectra
– volume: 32
  start-page: 4
  year: 2001
  ident: br0140
  article-title: Fast algorithm for the approximation of the pseudospectral abscissa and pseudospectral radius
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 64
  year: 2013
  ident: br0030
  article-title: An experimental study of approximation algorithms for the joint spectral radius
  publication-title: Numer. Algorithms
– volume: 23
  start-page: 1031
  year: 1992
  end-page: 1079
  ident: br0080
  article-title: Two-scale difference equations. ii. Local regularity, infinite products of matrices and fractals
  publication-title: SIAM J. Math. Anal.
– ident: br0340
– volume: 4
  year: 2023
  ident: 10.1016/j.laa.2025.06.024_br0280
  article-title: Elliptic polytopes and Lyapunov norms of linear operators
  publication-title: Calcolo
– volume: 428
  start-page: 2385
  year: 2008
  ident: 10.1016/j.laa.2025.06.024_br0300
  article-title: Approximation of the joint spectral radius using sum of squares
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.12.027
– volume: 191
  start-page: 3
  year: 2000
  ident: 10.1016/j.laa.2025.06.024_br0120
  article-title: Asymptotic behaviour of the partition function
  publication-title: Sb. Math.
  doi: 10.1070/SM2000v191n03ABEH000464
– volume: 226
  start-page: 4667
  issue: 6
  year: 2011
  ident: 10.1016/j.laa.2025.06.024_br0220
  article-title: An explicit counterexample to the Lagarias–Wang finiteness conjecture
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2010.12.012
– ident: 10.1016/j.laa.2025.06.024_br0320
– volume: 14
  start-page: 729
  year: 2007
  ident: 10.1016/j.laa.2025.06.024_br0190
  article-title: Balanced complex polytopes and related vector and matrix norms
  publication-title: J. Convex Anal.
– volume: 27
  start-page: 721
  year: 2005
  ident: 10.1016/j.laa.2025.06.024_br0180
  article-title: Complex polytope extremality results for families of matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040606818
– ident: 10.1016/j.laa.2025.06.024_br0340
– year: 2011
  ident: 10.1016/j.laa.2025.06.024_br0330
  article-title: JSR: a toolbox to compute the joint spectral radius
– volume: 93
  start-page: 259
  issue: 345
  year: 2024
  ident: 10.1016/j.laa.2025.06.024_br0170
  article-title: Computing the spectral gap of a family of matrices
  publication-title: Math. Compet.
  doi: 10.1090/mcom/3856
– year: 2015
  ident: 10.1016/j.laa.2025.06.024_br0270
– ident: 10.1016/j.laa.2025.06.024_br0350
– volume: 32
  start-page: 4
  year: 2001
  ident: 10.1016/j.laa.2025.06.024_br0140
  article-title: Fast algorithm for the approximation of the pseudospectral abscissa and pseudospectral radius
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 49
  year: 1988
  ident: 10.1016/j.laa.2025.06.024_br0020
  article-title: Lyapunov indicators of discrete inclusions i-iii
  publication-title: Autom. Remote Control
– volume: 37
  start-page: 18
  issue: 1
  year: 2016
  ident: 10.1016/j.laa.2025.06.024_br0160
  article-title: Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/15M1006945
– volume: 231
  year: 1995
  ident: 10.1016/j.laa.2025.06.024_br0110
  article-title: Stability of discrete linear inclusion
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)90006-3
– volume: 23
  start-page: 1031
  issue: 4
  year: 1992
  ident: 10.1016/j.laa.2025.06.024_br0080
  article-title: Two-scale difference equations. ii. Local regularity, infinite products of matrices and fractals
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0523059
– volume: 31
  start-page: 602
  issue: 2
  year: 2009
  ident: 10.1016/j.laa.2025.06.024_br0210
  article-title: Finding extremal complex polytope norms for families of real matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/080715718
– year: 2005
  ident: 10.1016/j.laa.2025.06.024_br0090
– volume: 166
  start-page: 21
  year: 1992
  ident: 10.1016/j.laa.2025.06.024_br0060
  article-title: Bounded semigroups of matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90267-E
– ident: 10.1016/j.laa.2025.06.024_br0360
– volume: 463
  start-page: 154
  year: 2014
  ident: 10.1016/j.laa.2025.06.024_br0290
  article-title: A tree-based approach to joint spectral radius determination
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2014.08.009
– volume: 13
  start-page: 37
  issue: 1
  year: 2013
  ident: 10.1016/j.laa.2025.06.024_br0150
  article-title: Exact computation of joint spectral characteristics of linear operators
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-012-9121-0
– volume: 49
  start-page: 3
  year: 2011
  ident: 10.1016/j.laa.2025.06.024_br0130
  article-title: Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100817851
– year: 2009
  ident: 10.1016/j.laa.2025.06.024_br0230
  article-title: The Joint Spectral Radius. Theory and Applications
– volume: 428
  start-page: 2265
  issue: 10
  year: 2008
  ident: 10.1016/j.laa.2025.06.024_br0200
  article-title: An algorithm for finding extremal polytope norms of matrix families
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.07.009
– volume: 64
  year: 2013
  ident: 10.1016/j.laa.2025.06.024_br0030
  article-title: An experimental study of approximation algorithms for the joint spectral radius
  publication-title: Numer. Algorithms
– year: 2006
  ident: 10.1016/j.laa.2025.06.024_br0240
– volume: 63
  year: 1960
  ident: 10.1016/j.laa.2025.06.024_br0310
  article-title: A note on the joint spectral radius
  publication-title: Kon. Nederl. Acad. Wet. Proc.
– volume: 52
  start-page: 687
  issue: 1
  year: 2011
  ident: 10.1016/j.laa.2025.06.024_br0010
  article-title: Joint spectral radius and F-complete graph Lyapunov functions
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/110855272
– volume: 214
  year: 1995
  ident: 10.1016/j.laa.2025.06.024_br0250
  article-title: The finiteness conjecture for the generalized spectral radius of a set of matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(93)00052-2
– volume: 24
  start-page: 963
  year: 2003
  ident: 10.1016/j.laa.2025.06.024_br0050
  article-title: An elementary counterexample to the finiteness conjecture
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479801397846
– volume: 432
  start-page: 796
  issue: 01
  year: 2010
  ident: 10.1016/j.laa.2025.06.024_br0070
  article-title: Finiteness property of pairs of 2×2 sign-matrices via real extremal polytope norm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.09.022
– volume: 15
  start-page: 77
  year: 2002
  ident: 10.1016/j.laa.2025.06.024_br0040
  article-title: Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-01-00378-2
– volume: 47
  year: 2001
  ident: 10.1016/j.laa.2025.06.024_br0100
  article-title: On codes that avoid specified differences
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.904557
– volume: 46
  issue: 3
  year: 2020
  ident: 10.1016/j.laa.2025.06.024_br0260
  article-title: Improved invariant polytope algorithm and applications
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3408891
SSID ssj0004702
Score 2.4254134
Snippet In this paper we propose a new method to determine the joint spectral radius of a finite set of real matrices by verifying that a given family of candidates...
SourceID crossref
elsevier
SourceType Index Database
Publisher
SubjectTerms Exact computation
Finite tree algorithm
Invariant polytope algorithm
Joint spectral radius
Pseudo spectral radius
Title A hybrid approach to joint spectral radius computation
URI https://dx.doi.org/10.1016/j.laa.2025.06.024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 20211212
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004702
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA66edCD-BPnL3Lw5Kh0abqkxyETFR0eNtmtJG3KNkc39kPmf-9L03Z1OtCDl1IKTUu-knyv73vfQ-iK2yoQQcAtLpiyqIKAFTZB15IuCx0RiShKjLRfn1irxbtd7yXtCjhN2gmwOOaLhTf-V6jhGoCtS2f_AHc-KFyAcwAdjgA7HH8FfKPa-9BlWLlduKaXg1E_nlWTskpdkT8RYX8-TfTk80IuPquLBuYpJlXdAQRi6Ty9UMx15zipgW788baiNdIZHNVP_B47Q1hpe8WfC8TNhahLsT-FNcj0wfy22prAf3AzFNrBibiJE6opif7qbL2y4-Q6wExiNvBhCF8P4WuZHaGbqEyY6_ESKjcemt3HZakrs1MDePNeWaI6keytvMfPVKNAH9p7aDfl_bhh8NpHGyo-QDvPuWnu9BDVG9gghzPk8GyEE-Rwhhw2yOECckeoc9ds395baVsLKyAQTFvUq1FVD4EneZzX6560o4gxiFSV5IIq7tWkIqF2ynMcYE-SUSp1iyRpu7YgSjnHqBSPYnWCsLZDlNSxaUQpJREVjBLpOSEJnMAOZK2CrrMZ8MfGvcRfO-cVRLM58lP6ZWiVD3ivv-30L884Q9vLz-wclWaTubpAW8H7rD-dXKZgfwK2F04V
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+to+joint+spectral+radius+computation&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Mejstrik%2C+Thomas&rft.au=Reif%2C+Ulrich&rft.date=2025-07-01&rft.issn=0024-3795&rft_id=info:doi/10.1016%2Fj.laa.2025.06.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2025_06_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon