Token Swapping on Trees
The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník 24, no 2; číslo Discrete Algorithms |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Discrete Mathematics & Theoretical Computer Science
2023
|
| Témata: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The input to the token swapping problem is a graph with vertices $v_1, v_2,
\ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex.
The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a
minimum number of swaps, where a swap exchanges the tokens on the endpoints of
an edge. We present some results about token swapping on a tree, also known as
"sorting with a transposition tree":
1. An optimum swap sequence may need to perform a swap on a leaf vertex that
has the correct token (a "happy leaf"), disproving a conjecture of Vaughan.
2. Any algorithm that fixes happy leaves -- as all known approximation
algorithms for the problem do -- has approximation factor at least $4/3$.
Furthermore, the two best-known 2-approximation algorithms have approximation
factor exactly 2.
3. A generalized problem -- weighted coloured token swapping -- is
NP-complete on trees, even when they are restricted to be subdivided stars, but
solvable in polynomial time on paths and stars. In this version, tokens and
vertices have colours, and colours have weights. The goal is to get every token
to a vertex of the same colour, and the cost of a swap is the sum of the
weights of the two tokens involved. |
|---|---|
| AbstractList | The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved. The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved. |
| Author | Biniaz, Ahmad Jain, Kshitij Masárová, Zuzana Naredla, Anurag Murty Tkadlec, Josef Miltzow, Tillmann Turcotte, Alexi Lubiw, Anna Mondal, Debajyoti |
| Author_xml | – sequence: 1 givenname: Ahmad surname: Biniaz fullname: Biniaz, Ahmad – sequence: 2 givenname: Kshitij surname: Jain fullname: Jain, Kshitij – sequence: 3 givenname: Anna surname: Lubiw fullname: Lubiw, Anna – sequence: 4 givenname: Zuzana surname: Masárová fullname: Masárová, Zuzana – sequence: 5 givenname: Tillmann surname: Miltzow fullname: Miltzow, Tillmann – sequence: 6 givenname: Debajyoti surname: Mondal fullname: Mondal, Debajyoti – sequence: 7 givenname: Anurag Murty surname: Naredla fullname: Naredla, Anurag Murty – sequence: 8 givenname: Josef surname: Tkadlec fullname: Tkadlec, Josef – sequence: 9 givenname: Alexi surname: Turcotte fullname: Turcotte, Alexi |
| BookMark | eNpN0E9LAzEQhvEgFWyrJw9ee5etyUw2yR6l-KdQ8OB6DslmUra2m5IUxG-vtiKe5mUOv8MzYaMhDcTYteBzqaAxd2F36MrcoMEzNhao6srwmo_-7Qs2KWXDuYBG6jG7adM7DbPXD7ff98N6loZZm4nKJTuPblvo6vdO2dvjQ7t4rlYvT8vF_arqgDdYdcZBCEp4IZEUSUEeGgQgh0F46bXRyhmtMcoI3oCvuadAGJV3HILAKVue3JDcxu5zv3P50ybX2-Mj5bV1-dB3W7JROxUJlOZGSEXRAArk6FTjsQakb-v2ZHU5lZIp_nmC22Mfe-xjf_rgFy1lWJc |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/dmtcs.8383 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_f7a6fe26708146ef8231303a69b3523e 10_46298_dmtcs_8383 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M |
| ID | FETCH-LOGICAL-c2093-c8a2dd61b143e6e41eb29322ea3d1b4b7876a8773f4f2b82b50bede3f6ba02d13 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 |
| IngestDate | Fri Oct 03 12:27:03 EDT 2025 Sat Nov 29 02:48:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Discrete Algorithms |
| Language | English |
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2093-c8a2dd61b143e6e41eb29322ea3d1b4b7876a8773f4f2b82b50bede3f6ba02d13 |
| OpenAccessLink | https://doaj.org/article/f7a6fe26708146ef8231303a69b3523e |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7a6fe26708146ef8231303a69b3523e crossref_primary_10_46298_dmtcs_8383 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2023 |
| Publisher | Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 |
| Score | 2.3166611 |
| Snippet | The input to the token swapping problem is a graph with vertices $v_1, v_2,
\ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex.
The... The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | 03d15, 05c05, 68r05 computer science - computational complexity computer science - data structures and algorithms f.2.0 |
| Title | Token Swapping on Trees |
| URI | https://doaj.org/article/f7a6fe26708146ef8231303a69b3523e |
| Volume | 24, no 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2hwgEOLGUrS5VDr6GJnXo5AqKCQ6tKFKmcIjseI4RIUVLg97GTtConLtysyIqSN7LneZn3AHrMRMpqJsPENUKX8TCUiokQY5cesniQxVRXZhN8PBazmZysWX35O2G1PHANXN9yxSwSxiO_WYXWH1u5aVcxqR13oOhnX8d6loup5vyAyITX1XgJI1L0zfsiK68EFfRX_lmT6a_yyXAfdhsiGFzXH3AAG5i3YW9pshA0Y64NO6OVsGp5CCfT-RvmweO38roKL8E8D6YFYnkET8O76e192HgbhBmJJA0zoYgxLNaOryDDJHYrXEelCCpqYp1oN46YEpxTm1iiBdGDSKNBaplWETExPYZWPs_xFAJfh0GFQmKSSh9dM0sUp1wKrY2gUQd6yz9OP2oJi9RR_wqYtAIm9cB04MajseridaerBy4aaRON9K9onP3HS85h25u61xsdF9BaFJ94CVvZ1-K1LLpVoLuwOXkYTZ5_AMUerNk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Token+Swapping+on+Trees&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Biniaz%2C+Ahmad&rft.au=Jain%2C+Kshitij&rft.au=Lubiw%2C+Anna&rft.au=Mas%C3%A1rov%C3%A1%2C+Zuzana&rft.date=2023&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=24%2C+no+2&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.46298%2Fdmtcs.8383&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_8383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |