Token Swapping on Trees

The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 24, no 2; číslo Discrete Algorithms
Hlavní autoři: Biniaz, Ahmad, Jain, Kshitij, Lubiw, Anna, Masárová, Zuzana, Miltzow, Tillmann, Mondal, Debajyoti, Naredla, Anurag Murty, Tkadlec, Josef, Turcotte, Alexi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 2023
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
AbstractList The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
Author Biniaz, Ahmad
Jain, Kshitij
Masárová, Zuzana
Naredla, Anurag Murty
Tkadlec, Josef
Miltzow, Tillmann
Turcotte, Alexi
Lubiw, Anna
Mondal, Debajyoti
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Biniaz
  fullname: Biniaz, Ahmad
– sequence: 2
  givenname: Kshitij
  surname: Jain
  fullname: Jain, Kshitij
– sequence: 3
  givenname: Anna
  surname: Lubiw
  fullname: Lubiw, Anna
– sequence: 4
  givenname: Zuzana
  surname: Masárová
  fullname: Masárová, Zuzana
– sequence: 5
  givenname: Tillmann
  surname: Miltzow
  fullname: Miltzow, Tillmann
– sequence: 6
  givenname: Debajyoti
  surname: Mondal
  fullname: Mondal, Debajyoti
– sequence: 7
  givenname: Anurag Murty
  surname: Naredla
  fullname: Naredla, Anurag Murty
– sequence: 8
  givenname: Josef
  surname: Tkadlec
  fullname: Tkadlec, Josef
– sequence: 9
  givenname: Alexi
  surname: Turcotte
  fullname: Turcotte, Alexi
BookMark eNpN0E9LAzEQhvEgFWyrJw9ee5etyUw2yR6l-KdQ8OB6DslmUra2m5IUxG-vtiKe5mUOv8MzYaMhDcTYteBzqaAxd2F36MrcoMEzNhao6srwmo_-7Qs2KWXDuYBG6jG7adM7DbPXD7ff98N6loZZm4nKJTuPblvo6vdO2dvjQ7t4rlYvT8vF_arqgDdYdcZBCEp4IZEUSUEeGgQgh0F46bXRyhmtMcoI3oCvuadAGJV3HILAKVue3JDcxu5zv3P50ybX2-Mj5bV1-dB3W7JROxUJlOZGSEXRAArk6FTjsQakb-v2ZHU5lZIp_nmC22Mfe-xjf_rgFy1lWJc
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/dmtcs.8383
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_f7a6fe26708146ef8231303a69b3523e
10_46298_dmtcs_8383
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c2093-c8a2dd61b143e6e41eb29322ea3d1b4b7876a8773f4f2b82b50bede3f6ba02d13
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Fri Oct 03 12:27:03 EDT 2025
Sat Nov 29 02:48:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Discrete Algorithms
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2093-c8a2dd61b143e6e41eb29322ea3d1b4b7876a8773f4f2b82b50bede3f6ba02d13
OpenAccessLink https://doaj.org/article/f7a6fe26708146ef8231303a69b3523e
ParticipantIDs doaj_primary_oai_doaj_org_article_f7a6fe26708146ef8231303a69b3523e
crossref_primary_10_46298_dmtcs_8383
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2023
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.3166611
Snippet The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The...
The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms 03d15, 05c05, 68r05
computer science - computational complexity
computer science - data structures and algorithms
f.2.0
Title Token Swapping on Trees
URI https://doaj.org/article/f7a6fe26708146ef8231303a69b3523e
Volume 24, no 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2hwgEOLGUrS5VDr6GJnXo5AqKCQ6tKFKmcIjseI4RIUVLg97GTtConLtysyIqSN7LneZn3AHrMRMpqJsPENUKX8TCUiokQY5cesniQxVRXZhN8PBazmZysWX35O2G1PHANXN9yxSwSxiO_WYXWH1u5aVcxqR13oOhnX8d6loup5vyAyITX1XgJI1L0zfsiK68EFfRX_lmT6a_yyXAfdhsiGFzXH3AAG5i3YW9pshA0Y64NO6OVsGp5CCfT-RvmweO38roKL8E8D6YFYnkET8O76e192HgbhBmJJA0zoYgxLNaOryDDJHYrXEelCCpqYp1oN46YEpxTm1iiBdGDSKNBaplWETExPYZWPs_xFAJfh0GFQmKSSh9dM0sUp1wKrY2gUQd6yz9OP2oJi9RR_wqYtAIm9cB04MajseridaerBy4aaRON9K9onP3HS85h25u61xsdF9BaFJ94CVvZ1-K1LLpVoLuwOXkYTZ5_AMUerNk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Token+Swapping+on+Trees&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Biniaz%2C+Ahmad&rft.au=Jain%2C+Kshitij&rft.au=Lubiw%2C+Anna&rft.au=Mas%C3%A1rov%C3%A1%2C+Zuzana&rft.date=2023&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=24%2C+no+2&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.46298%2Fdmtcs.8383&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_8383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon