Social spider optimisation algorithm for dimension reduction of electroencephalogram signals in human emotion recognition

Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of engineering & technology (Dubai) Ročník 7; číslo 2.15; s. 146
Hlavní autoři: Yousef Al-Qammaz, Abdullah, Kabir Ahmad, Farzana, Yusof, Yuhanis
Médium: Journal Article
Jazyk:angličtina
Vydáno: 06.04.2018
ISSN:2227-524X, 2227-524X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find optimal feature set to maximize classification performance and mimics the cooperative behaviour and mechanism of social spiders in nature. This proposed feature selection method has been tested on DEAP EEG dataset with six subjects and compared with the most popular heuristic algorithms such as GA, PSO and ABC. The results show that the SSO-FS provides a remarkable and comparable performance compared to other existing methods. Whereby, the max accuracy obtained is 66.66% and 70.83%, the mean accuracy obtained is 55.51 7.17 and 60.97 8.38 for 3-level of valence emotions and 3-level of arousal emotions classification respectively.  
AbstractList Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find optimal feature set to maximize classification performance and mimics the cooperative behaviour and mechanism of social spiders in nature. This proposed feature selection method has been tested on DEAP EEG dataset with six subjects and compared with the most popular heuristic algorithms such as GA, PSO and ABC. The results show that the SSO-FS provides a remarkable and comparable performance compared to other existing methods. Whereby, the max accuracy obtained is 66.66% and 70.83%, the mean accuracy obtained is 55.51 7.17 and 60.97 8.38 for 3-level of valence emotions and 3-level of arousal emotions classification respectively.  
Author Yusof, Yuhanis
Yousef Al-Qammaz, Abdullah
Kabir Ahmad, Farzana
Author_xml – sequence: 1
  givenname: Abdullah
  surname: Yousef Al-Qammaz
  fullname: Yousef Al-Qammaz, Abdullah
– sequence: 2
  givenname: Farzana
  surname: Kabir Ahmad
  fullname: Kabir Ahmad, Farzana
– sequence: 3
  givenname: Yuhanis
  surname: Yusof
  fullname: Yusof, Yuhanis
BookMark eNp9kM1KAzEUhYNUsNY-gZu8wIxJJpmfpRT_oOBCBXdDmtxMU2aSkqRC397O1IW4cHUPl_OdxXeNZs47QOiWkpxyTps7u4OUf1WW5VTklBZVcYHmjLEqE4x_zn7lK7SMcUcIoQWnNW_m6PjmlZU9jnurIWC_T3awUSbrHZZ954NN2wEbH7C2A7g4_gPog5oa3mDoQaXgwSnYb2XvuyAHHG3nZB-xdXh7GKTDMPh0RpXvnB3zDbo0pw4sf-4CfTw-vK-es_Xr08vqfp0pRpoik0wTrQXd1KXU2uhaU74pa2iEFlBqZoSoJOFFRSinZSkN5yCMNCUwzsumKRaoOO-q4GMMYNp9sIMMx5aSdhLYjgLbUWBLRTsJPFHNH0rZNGlJQdr-X_YbYiJ-4w
CitedBy_id crossref_primary_10_1109_TCDS_2021_3065200
crossref_primary_10_1016_j_compeleceng_2024_109889
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.14419/ijet.v7i2.15.11373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-524X
ExternalDocumentID 10_14419_ijet_v7i2_15_11373
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
KQ8
M~E
RNS
ID FETCH-LOGICAL-c2093-a2d0dd51b86addfd8d14b68e95d5e6d2f557a0437014166af44e5faf6e2446993
ISSN 2227-524X
IngestDate Tue Nov 18 22:05:31 EST 2025
Sat Nov 29 03:36:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2.15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2093-a2d0dd51b86addfd8d14b68e95d5e6d2f557a0437014166af44e5faf6e2446993
OpenAccessLink https://www.sciencepubco.com/index.php/ijet/article/download/11373/4369
ParticipantIDs crossref_primary_10_14419_ijet_v7i2_15_11373
crossref_citationtrail_10_14419_ijet_v7i2_15_11373
PublicationCentury 2000
PublicationDate 2018-04-06
PublicationDateYYYYMMDD 2018-04-06
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-06
  day: 06
PublicationDecade 2010
PublicationTitle International journal of engineering & technology (Dubai)
PublicationYear 2018
SSID ssj0001341849
Score 2.0379183
Snippet Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 146
Title Social spider optimisation algorithm for dimension reduction of electroencephalogram signals in human emotion recognition
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-524X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341849
  issn: 2227-524X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwgEOiE9RvrQHbsbFdrxr-xgBFRJQgVRQe7J2vWviKrYjJ6kKB34ov4aZ9WZtaFXRAxcrWdmjJPMyOzN6-4aQFzIORJBI7muptB9zppAEkPiFCMI0zcpEGQW-rx-Sg4P06Cj7NJn82p6FOV0kTZOenWXL_-pqWANn49HZK7jbGYUFeA1Ohyu4Ha7_5Hh74HaFo187r4WQUFvKjicW39quWs9rQy5UKOyPzTKvQ_3WbepoB-PgP345F0bSuvaQ5oFCy1Vjp_rpfvyP5whI1r0nAzN-aDSO5Cn0oH9oULd2rX3Mdd9sJI7HzkaxaKUhVV74n0VdC9PsnkkFZfPQxn4vZNV5s3ndg3VfdD9E4zab482qNbqTx5u56FVUXJcjTA05hg_BEI_sQtHcszn39AVrNponI9BGeyEbBWfb7Dy3aUBGiKKr1YkGK0mFT-Gom37Eyp8S3X9tnY7QiKUUmsnRSI5G8pDlxsg1cj1KWIZ0w48_R_0_SB9SU525r2FFsdDOq_MfZpQ4jTKgwzvkti1d6KyH3F0y0c09cmskaHmffO_BR3vw0TH4qAMfBfBRBz7qwEfbkl4EPmrBR6uGGvBRCz46At8D8mX_7eHrd74d7uEXUZBNfRGpQCkWypTDFluqVIWx5KnOmGKaq6hkLBEovIVMZM5FGcealaLkGhJSDln1Q7LTtI1-RGg0LXkQilDGCYN9vxRTsKZUIUMt4F22S6LtL5cXVvkeB7As8kvctkteuoeWvfDLZbc_vtrtT8jNAeVPyc662-hn5EZxuq5W3XODlN9USLHn
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+spider+optimisation+algorithm+for+dimension+reduction+of+electroencephalogram+signals+in+human+emotion+recognition&rft.jtitle=International+journal+of+engineering+%26+technology+%28Dubai%29&rft.au=Yousef+Al-Qammaz%2C+Abdullah&rft.au=Kabir+Ahmad%2C+Farzana&rft.au=Yusof%2C+Yuhanis&rft.date=2018-04-06&rft.issn=2227-524X&rft.eissn=2227-524X&rft.volume=7&rft.issue=2.15&rft.spage=146&rft_id=info:doi/10.14419%2Fijet.v7i2.15.11373&rft.externalDBID=n%2Fa&rft.externalDocID=10_14419_ijet_v7i2_15_11373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-524X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-524X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-524X&client=summon