Social spider optimisation algorithm for dimension reduction of electroencephalogram signals in human emotion recognition
Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find...
Uloženo v:
| Vydáno v: | International journal of engineering & technology (Dubai) Ročník 7; číslo 2.15; s. 146 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
06.04.2018
|
| ISSN: | 2227-524X, 2227-524X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find optimal feature set to maximize classification performance and mimics the cooperative behaviour and mechanism of social spiders in nature. This proposed feature selection method has been tested on DEAP EEG dataset with six subjects and compared with the most popular heuristic algorithms such as GA, PSO and ABC. The results show that the SSO-FS provides a remarkable and comparable performance compared to other existing methods. Whereby, the max accuracy obtained is 66.66% and 70.83%, the mean accuracy obtained is 55.51 7.17 and 60.97 8.38 for 3-level of valence emotions and 3-level of arousal emotions classification respectively. |
|---|---|
| AbstractList | Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called Social Spider Optimization (SSO-FS). In this research, SSO-FS is used in the EEG-based emotion recognition model as searching method to find optimal feature set to maximize classification performance and mimics the cooperative behaviour and mechanism of social spiders in nature. This proposed feature selection method has been tested on DEAP EEG dataset with six subjects and compared with the most popular heuristic algorithms such as GA, PSO and ABC. The results show that the SSO-FS provides a remarkable and comparable performance compared to other existing methods. Whereby, the max accuracy obtained is 66.66% and 70.83%, the mean accuracy obtained is 55.51 7.17 and 60.97 8.38 for 3-level of valence emotions and 3-level of arousal emotions classification respectively. |
| Author | Yusof, Yuhanis Yousef Al-Qammaz, Abdullah Kabir Ahmad, Farzana |
| Author_xml | – sequence: 1 givenname: Abdullah surname: Yousef Al-Qammaz fullname: Yousef Al-Qammaz, Abdullah – sequence: 2 givenname: Farzana surname: Kabir Ahmad fullname: Kabir Ahmad, Farzana – sequence: 3 givenname: Yuhanis surname: Yusof fullname: Yusof, Yuhanis |
| BookMark | eNp9kM1KAzEUhYNUsNY-gZu8wIxJJpmfpRT_oOBCBXdDmtxMU2aSkqRC397O1IW4cHUPl_OdxXeNZs47QOiWkpxyTps7u4OUf1WW5VTklBZVcYHmjLEqE4x_zn7lK7SMcUcIoQWnNW_m6PjmlZU9jnurIWC_T3awUSbrHZZ954NN2wEbH7C2A7g4_gPog5oa3mDoQaXgwSnYb2XvuyAHHG3nZB-xdXh7GKTDMPh0RpXvnB3zDbo0pw4sf-4CfTw-vK-es_Xr08vqfp0pRpoik0wTrQXd1KXU2uhaU74pa2iEFlBqZoSoJOFFRSinZSkN5yCMNCUwzsumKRaoOO-q4GMMYNp9sIMMx5aSdhLYjgLbUWBLRTsJPFHNH0rZNGlJQdr-X_YbYiJ-4w |
| CitedBy_id | crossref_primary_10_1109_TCDS_2021_3065200 crossref_primary_10_1016_j_compeleceng_2024_109889 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.14419/ijet.v7i2.15.11373 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2227-524X |
| ExternalDocumentID | 10_14419_ijet_v7i2_15_11373 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION KQ8 M~E RNS |
| ID | FETCH-LOGICAL-c2093-a2d0dd51b86addfd8d14b68e95d5e6d2f557a0437014166af44e5faf6e2446993 |
| ISSN | 2227-524X |
| IngestDate | Tue Nov 18 22:05:31 EST 2025 Sat Nov 29 03:36:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2.15 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2093-a2d0dd51b86addfd8d14b68e95d5e6d2f557a0437014166af44e5faf6e2446993 |
| OpenAccessLink | https://www.sciencepubco.com/index.php/ijet/article/download/11373/4369 |
| ParticipantIDs | crossref_primary_10_14419_ijet_v7i2_15_11373 crossref_citationtrail_10_14419_ijet_v7i2_15_11373 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-06 |
| PublicationDateYYYYMMDD | 2018-04-06 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of engineering & technology (Dubai) |
| PublicationYear | 2018 |
| SSID | ssj0001341849 |
| Score | 2.0379183 |
| Snippet | Due to some limitations of current heuristics and evolutionary algorithms, this paper proposed a new swarm based algorithm for feature selection method called... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 146 |
| Title | Social spider optimisation algorithm for dimension reduction of electroencephalogram signals in human emotion recognition |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-524X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341849 issn: 2227-524X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwgEOiE9RvrQHbsbFdrxr-xgBFRJQgVRQe7J2vWviKrYjJ6kKB34ov4aZ9WZtaFXRAxcrWdmjJPMyOzN6-4aQFzIORJBI7muptB9zppAEkPiFCMI0zcpEGQW-rx-Sg4P06Cj7NJn82p6FOV0kTZOenWXL_-pqWANn49HZK7jbGYUFeA1Ohyu4Ha7_5Hh74HaFo187r4WQUFvKjicW39quWs9rQy5UKOyPzTKvQ_3WbepoB-PgP345F0bSuvaQ5oFCy1Vjp_rpfvyP5whI1r0nAzN-aDSO5Cn0oH9oULd2rX3Mdd9sJI7HzkaxaKUhVV74n0VdC9PsnkkFZfPQxn4vZNV5s3ndg3VfdD9E4zab482qNbqTx5u56FVUXJcjTA05hg_BEI_sQtHcszn39AVrNponI9BGeyEbBWfb7Dy3aUBGiKKr1YkGK0mFT-Gom37Eyp8S3X9tnY7QiKUUmsnRSI5G8pDlxsg1cj1KWIZ0w48_R_0_SB9SU525r2FFsdDOq_MfZpQ4jTKgwzvkti1d6KyH3F0y0c09cmskaHmffO_BR3vw0TH4qAMfBfBRBz7qwEfbkl4EPmrBR6uGGvBRCz46At8D8mX_7eHrd74d7uEXUZBNfRGpQCkWypTDFluqVIWx5KnOmGKaq6hkLBEovIVMZM5FGcealaLkGhJSDln1Q7LTtI1-RGg0LXkQilDGCYN9vxRTsKZUIUMt4F22S6LtL5cXVvkeB7As8kvctkteuoeWvfDLZbc_vtrtT8jNAeVPyc662-hn5EZxuq5W3XODlN9USLHn |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+spider+optimisation+algorithm+for+dimension+reduction+of+electroencephalogram+signals+in+human+emotion+recognition&rft.jtitle=International+journal+of+engineering+%26+technology+%28Dubai%29&rft.au=Yousef+Al-Qammaz%2C+Abdullah&rft.au=Kabir+Ahmad%2C+Farzana&rft.au=Yusof%2C+Yuhanis&rft.date=2018-04-06&rft.issn=2227-524X&rft.eissn=2227-524X&rft.volume=7&rft.issue=2.15&rft.spage=146&rft_id=info:doi/10.14419%2Fijet.v7i2.15.11373&rft.externalDBID=n%2Fa&rft.externalDocID=10_14419_ijet_v7i2_15_11373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-524X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-524X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-524X&client=summon |