Invertible and Fredholm operators on interpolation scales

We investigate the behaviour of invertible and Fredholm operators on interpolation scales constructed via a family of interpolation functors {Fθ}θ∈(0,1). This family includes both complex and real interpolation functors. Our results demonstrate, in particular, that kernels and cokernels of operators...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of approximation theory s. 106213
Hlavní autoři: Asekritova, Irina, Kruglyak, Natan, Mastyło, Mieczysław
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2025
Témata:
ISSN:0021-9045
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate the behaviour of invertible and Fredholm operators on interpolation scales constructed via a family of interpolation functors {Fθ}θ∈(0,1). This family includes both complex and real interpolation functors. Our results demonstrate, in particular, that kernels and cokernels of operators are stable on intervals of parameters θ where the operators are Fredholm. Additionally, we introduce the notion of Fredholm operators in the category of Banach couples, establishing its relevance for the obtained results.
ISSN:0021-9045
DOI:10.1016/j.jat.2025.106213