Invertible and Fredholm operators on interpolation scales
We investigate the behaviour of invertible and Fredholm operators on interpolation scales constructed via a family of interpolation functors {Fθ}θ∈(0,1). This family includes both complex and real interpolation functors. Our results demonstrate, in particular, that kernels and cokernels of operators...
Uloženo v:
| Vydáno v: | Journal of approximation theory s. 106213 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2025
|
| Témata: | |
| ISSN: | 0021-9045 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate the behaviour of invertible and Fredholm operators on interpolation scales constructed via a family of interpolation functors {Fθ}θ∈(0,1). This family includes both complex and real interpolation functors. Our results demonstrate, in particular, that kernels and cokernels of operators are stable on intervals of parameters θ where the operators are Fredholm. Additionally, we introduce the notion of Fredholm operators in the category of Banach couples, establishing its relevance for the obtained results. |
|---|---|
| ISSN: | 0021-9045 |
| DOI: | 10.1016/j.jat.2025.106213 |