Reinforcement learning for search tree size minimization in Constraint Programming: New results on scheduling benchmarks
Failure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space, proven particularly effective on scheduling problems. This paper analyzes FDS’s properties, showing that minimizing the size of its search tre...
Gespeichert in:
| Veröffentlicht in: | Computers & industrial engineering Jg. 209; S. 111413 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2025
|
| Schlagworte: | |
| ISSN: | 0360-8352 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Failure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space, proven particularly effective on scheduling problems. This paper analyzes FDS’s properties, showing that minimizing the size of its search tree guided by ranked branching decisions is closely related to the Multi-armed bandit (MAB) problem. Building on this insight, MAB reinforcement learning algorithms are applied to FDS, extended with problem-specific refinements and parameter tuning, and evaluated on the two most fundamental scheduling problems, the Job Shop Scheduling Problem (JSSP) and Resource-Constrained Project Scheduling Problem (RCPSP). The resulting enhanced FDS, using the best extended MAB algorithm and configuration, performs 1.7 times faster on the JSSP and 2.5 times faster on the RCPSP benchmarks compared to the original implementation in a new solver called OptalCP, while also being 3.5 times faster on the JSSP and 2.1 times faster on the RCPSP benchmarks than the current state-of-the-art FDS algorithm in IBM CP Optimizer 22.1. Furthermore, using only a 900s time limit per instance, the enhanced FDS improved the existing state-of-the-art lower bounds of 78 of 84 JSSP and 226 of 393 RCPSP standard open benchmark instances while also completely closing a few of them.
•Reinforcement learning strongly improves Failure-Directed Search (FDS) efficiency.•FDS parameter tuning yields noticeable improvement and insight into their importance.•Two-fold improvement over baseline FDS achieved on fundamental scheduling problems.•Even larger improvement is achieved over state-of-the-art CP Optimizer’s FDS.•Hundreds of improved lower bounds for famous JSSP and RCPSP instances were obtained. |
|---|---|
| AbstractList | Failure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space, proven particularly effective on scheduling problems. This paper analyzes FDS’s properties, showing that minimizing the size of its search tree guided by ranked branching decisions is closely related to the Multi-armed bandit (MAB) problem. Building on this insight, MAB reinforcement learning algorithms are applied to FDS, extended with problem-specific refinements and parameter tuning, and evaluated on the two most fundamental scheduling problems, the Job Shop Scheduling Problem (JSSP) and Resource-Constrained Project Scheduling Problem (RCPSP). The resulting enhanced FDS, using the best extended MAB algorithm and configuration, performs 1.7 times faster on the JSSP and 2.5 times faster on the RCPSP benchmarks compared to the original implementation in a new solver called OptalCP, while also being 3.5 times faster on the JSSP and 2.1 times faster on the RCPSP benchmarks than the current state-of-the-art FDS algorithm in IBM CP Optimizer 22.1. Furthermore, using only a 900s time limit per instance, the enhanced FDS improved the existing state-of-the-art lower bounds of 78 of 84 JSSP and 226 of 393 RCPSP standard open benchmark instances while also completely closing a few of them.
•Reinforcement learning strongly improves Failure-Directed Search (FDS) efficiency.•FDS parameter tuning yields noticeable improvement and insight into their importance.•Two-fold improvement over baseline FDS achieved on fundamental scheduling problems.•Even larger improvement is achieved over state-of-the-art CP Optimizer’s FDS.•Hundreds of improved lower bounds for famous JSSP and RCPSP instances were obtained. |
| ArticleNumber | 111413 |
| Author | Hanzálek, Zdeněk Vilím, Petr Heinz, Vilém |
| Author_xml | – sequence: 1 givenname: Vilém orcidid: 0000-0001-6051-6699 surname: Heinz fullname: Heinz, Vilém email: vilem.heinz@cvut.cz organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic – sequence: 2 givenname: Petr surname: Vilím fullname: Vilím, Petr organization: ScheduleOpt, Czech Republic – sequence: 3 givenname: Zdeněk orcidid: 0000-0002-8135-1296 surname: Hanzálek fullname: Hanzálek, Zdeněk organization: Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Czech Republic |
| BookMark | eNp9kFtLAzEQhfNQwVb9Ab7lD-yabDZ70Scp3qCoiD6HdHbSpu4mkmy99NebUp-FgWGGcw6Hb0Ymzjsk5JyznDNeXWxysJgXrJA557zkYkKmTFQsa4Qsjsksxg1jrJQtn5LvF7TO-AA4oBtpjzo461Y0vWhMB6zpGBBptDukg3V2sDs9Wu-odXTuXRyDtsn4HPwq6CEpVpf0Eb9owLjtx0iTMsIau22_j12ig_Wgw3s8JUdG9xHP_vYJebu9eZ3fZ4unu4f59SKDgrUik0zWrRDSlAVnUMllWYnKtMCbAkxVg-6MNI1gjUSpG9RNB1UDRZpWyBpqcUL4IReCjzGgUR_BpgY_ijO1x6U2KuFSe1zqgCt5rg4eTMU-LQYVk8QBdjYgjKrz9h_3L1k9eLc |
| Cites_doi | 10.1016/j.orl.2004.04.002 10.1145/378239.379017 10.1016/S0377-2217(98)00364-6 10.1609/aaai.v32i1.12211 10.1287/mnsc.34.3.391 10.1016/j.ijpe.2023.108958 10.1016/j.cor.2024.106964 10.1016/S0377-2217(97)00019-2 10.1016/j.ejor.2022.11.034 10.1609/aaai.v37i10.26466 10.1287/mnsc.38.10.1495 10.1007/s10844-021-00666-5 10.13164/mendel.2020.2.009 10.1609/aaai.v35i5.16512 10.1145/3292500.3330701 10.1016/j.omega.2022.102770 10.1609/aaai.v30i1.10080 10.1016/S0377-2217(96)00170-1 10.1016/0377-2217(93)90182-M 10.1023/A:1006314320276 10.1287/ijoc.2023.1287 10.1090/S0002-9904-1952-09620-8 10.1016/j.cor.2020.104976 10.1002/1099-1425(200101/02)4:1<53::AID-JOS59>3.0.CO;2-Y 10.1016/j.cie.2022.108128 10.1609/aaai.v39i11.33239 10.1016/j.cie.2020.106857 10.1016/j.cor.2012.04.018 10.1016/j.cor.2020.105020 10.1016/j.artint.2009.09.002 10.1016/j.cie.2022.108586 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.cie.2025.111413 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2025_111413 S0360835225005595 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AAEDT AAEDW AAFTH AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c2093-50579335f4210c65b4636f9c182cf67cadf5f83085e5a8ea8dc68c28c29357c73 |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:05:04 EST 2025 Sat Nov 15 16:53:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 68T20 90C99 Heuristics 90-08 90B35 Reinforcement learning Discrete optimization 90C59 Scheduling 90C27 Constraint Programming Tree search |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2093-50579335f4210c65b4636f9c182cf67cadf5f83085e5a8ea8dc68c28c29357c73 |
| ORCID | 0000-0002-8135-1296 0000-0001-6051-6699 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cie.2025.111413 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2025_111413 elsevier_sciencedirect_doi_10_1016_j_cie_2025_111413 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Adams, Balas, Zawack (b3) 1988; 34 Xia, Yap (b66) 2018; 32 Boussemart, Hemery, Lecoutre, Sais (b9) 2004; vol. 16 Zarpellon, Jo, Lodi, Bengio (b70) 2021; 35 Michel, Hentenryck (b42) 2012 Jongejan (b27) 2023 Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. In Storer, Wu, Vaccari (b57) 1992; 38 Optimizizer (b47) 2023 Khalil, Le Bodic, Song, Nemhauser, Dilkina (b29) 2016; 30 Lecoutre, Sais, Tabary, Vidal (b36) 2007; vol. 7 Vilím (b62) 2012 Liang, Ganesh, Poupart, Czarnecki (b37) 2016 Bouška, Šůcha, Novák, Hanzálek (b8) 2023; 308 Chapelle, Li (b14) 2011; vol. 24 Habet, D., & Terrioux, C. (2018). Conflict History Based Branching Heuristic for CSP Solving. In Vilím (b61) 2009 Bonfietti, Lombardi, Milano (b7) 2015 Balafrej, Bessiere, Paparrizou (b6) 2015 Refalo (b51) 2004 Popescu, Polat-Erdeniz, Felfernig, Uta, Atas, Le (b50) 2022; 58 Kletzander, Musliu (b30) 2023; 37 Wattez, Koriche, Lecoutre, Paparrizou, Tabary (b64) 2020; vol. 325 He, Qu (b24) 2012; 39 . Chalumeau, Coulon, Cappart, Rousseau (b13) 2021 Kuleshov, Precup (b34) 2014 Vilím, Laborie, Shaw (b63) 2015 Demirkol, Mehta, Uzsoy (b16) 1998; 109 Heinz, Novák, Vlk, Hanzálek (b25) 2022; 172 Naderia, Ruizb, Roshanaeic (b44) 2023 Applegate, Bixby, Chvatal, Cook (b5) 1995 Achterberg, Koch, Martin (b2) 2005; 33 Yamada, Nakano (b68) 1992; vol. 2 Fatemi-Anaraki, Tavakkoli-Moghaddam, Foumani, Vahedi-Nouri (b18) 2023; 115 ScheduleOpt (b54) 2023 Hauder, Beham, Raggl, Parragh, Affenzeller (b23) 2020; 150 Wattez, Lecoutre, Paparrizou, Tabary (b65) 2019 Abreu, Nagano (b1) 2022; 168 ScheduleOpt (b55) 2025 Gomes, Selman, Crato, Kautz (b21) 2000; 24 (pp. 1–10). Volos, Greece: URL Rohaninejad, Hanzálek (b53) 2023; 263 Kolisch, Sprecher (b31) 1997; 96 Doolaard, Yorke-Smith (b17) 2022 Optal (b46) 2023 Gay, Hartert, Schaus (b19) 2015 Nedbálek, Novák (b45) 2025 Koster, Beney (b33) 2007 Mahajan, Teneketzis (b41) 2008 Koriche, Lecoutre, Paparrizou, Wattez (b32) 2022 (pp. 1–10). Sutton, Barto (b58) 2018 Loth, Sebag, Hamadi, Schoenauer (b39) 2013 University of Ghent (b60) 2023 Coelho, Vanhoucke (b15) 2020; 121 Brailsford, Potts, Smith (b10) 1999; 119 Brinkkötter, Brucker (b11) 2001; 4 Taillard (b59) 1993; 64 Godard, Laborie, Nuijten (b20) 2005; vol. 5 (pp. 530–535). Kazikova, Pluhacek, Senkerik (b28) 2020; 26 Liess, Michelon (b38) 2008; 157 Xu, Wu, Li, Yin (b67) 2025; 39 IBM (b26) 2023 Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an efficient SAT solver. In Robbins (b52) 1952; 58 Ouellet, Quimper (b48) 2013 Shaw (b56) 1998 Philippe Baptiste (b49) 2012 Yuraszeck, Mejía, Rossit, Lüer-Villagra (b69) 2025; 177 Cappart, Moisan, Rousseau, Prémont-Schwarz, Cire (b12) 2020 Lunardi, Birgin, Laborie, Ronconi, Voos (b40) 2020; 123 Lecoutre, Saïs, Tabary, Vidal (b35) 2009; 173 Godard (10.1016/j.cie.2025.111413_b20) 2005; vol. 5 Refalo (10.1016/j.cie.2025.111413_b51) 2004 Doolaard (10.1016/j.cie.2025.111413_b17) 2022 Adams (10.1016/j.cie.2025.111413_b3) 1988; 34 Liang (10.1016/j.cie.2025.111413_b37) 2016 ScheduleOpt (10.1016/j.cie.2025.111413_b55) 2025 Yuraszeck (10.1016/j.cie.2025.111413_b69) 2025; 177 Yamada (10.1016/j.cie.2025.111413_b68) 1992; vol. 2 Lecoutre (10.1016/j.cie.2025.111413_b36) 2007; vol. 7 Demirkol (10.1016/j.cie.2025.111413_b16) 1998; 109 Loth (10.1016/j.cie.2025.111413_b39) 2013 Chapelle (10.1016/j.cie.2025.111413_b14) 2011; vol. 24 Bouška (10.1016/j.cie.2025.111413_b8) 2023; 308 Gay (10.1016/j.cie.2025.111413_b19) 2015 Mahajan (10.1016/j.cie.2025.111413_b41) 2008 ScheduleOpt (10.1016/j.cie.2025.111413_b54) 2023 Xu (10.1016/j.cie.2025.111413_b67) 2025; 39 Kazikova (10.1016/j.cie.2025.111413_b28) 2020; 26 Fatemi-Anaraki (10.1016/j.cie.2025.111413_b18) 2023; 115 Jongejan (10.1016/j.cie.2025.111413_b27) 2023 Lecoutre (10.1016/j.cie.2025.111413_b35) 2009; 173 Robbins (10.1016/j.cie.2025.111413_b52) 1952; 58 10.1016/j.cie.2025.111413_b22 Brailsford (10.1016/j.cie.2025.111413_b10) 1999; 119 Vilím (10.1016/j.cie.2025.111413_b63) 2015 Liess (10.1016/j.cie.2025.111413_b38) 2008; 157 Naderia (10.1016/j.cie.2025.111413_b44) 2023 Boussemart (10.1016/j.cie.2025.111413_b9) 2004; vol. 16 University of Ghent (10.1016/j.cie.2025.111413_b60) 2023 Xia (10.1016/j.cie.2025.111413_b66) 2018; 32 Gomes (10.1016/j.cie.2025.111413_b21) 2000; 24 Bonfietti (10.1016/j.cie.2025.111413_b7) 2015 Kolisch (10.1016/j.cie.2025.111413_b31) 1997; 96 Applegate (10.1016/j.cie.2025.111413_b5) 1995 He (10.1016/j.cie.2025.111413_b24) 2012; 39 Kuleshov (10.1016/j.cie.2025.111413_b34) 2014 Vilím (10.1016/j.cie.2025.111413_b62) 2012 Sutton (10.1016/j.cie.2025.111413_b58) 2018 Taillard (10.1016/j.cie.2025.111413_b59) 1993; 64 Wattez (10.1016/j.cie.2025.111413_b65) 2019 Brinkkötter (10.1016/j.cie.2025.111413_b11) 2001; 4 Kletzander (10.1016/j.cie.2025.111413_b30) 2023; 37 Wattez (10.1016/j.cie.2025.111413_b64) 2020; vol. 325 Ouellet (10.1016/j.cie.2025.111413_b48) 2013 Koriche (10.1016/j.cie.2025.111413_b32) 2022 Abreu (10.1016/j.cie.2025.111413_b1) 2022; 168 Coelho (10.1016/j.cie.2025.111413_b15) 2020; 121 10.1016/j.cie.2025.111413_b4 Vilím (10.1016/j.cie.2025.111413_b61) 2009 Nedbálek (10.1016/j.cie.2025.111413_b45) 2025 Optimizizer (10.1016/j.cie.2025.111413_b47) 2023 Heinz (10.1016/j.cie.2025.111413_b25) 2022; 172 Shaw (10.1016/j.cie.2025.111413_b56) 1998 Lunardi (10.1016/j.cie.2025.111413_b40) 2020; 123 Optal (10.1016/j.cie.2025.111413_b46) 2023 Storer (10.1016/j.cie.2025.111413_b57) 1992; 38 Koster (10.1016/j.cie.2025.111413_b33) 2007 Michel (10.1016/j.cie.2025.111413_b42) 2012 10.1016/j.cie.2025.111413_b43 Chalumeau (10.1016/j.cie.2025.111413_b13) 2021 Hauder (10.1016/j.cie.2025.111413_b23) 2020; 150 Balafrej (10.1016/j.cie.2025.111413_b6) 2015 Rohaninejad (10.1016/j.cie.2025.111413_b53) 2023; 263 Popescu (10.1016/j.cie.2025.111413_b50) 2022; 58 Philippe Baptiste (10.1016/j.cie.2025.111413_b49) 2012 Zarpellon (10.1016/j.cie.2025.111413_b70) 2021; 35 Cappart (10.1016/j.cie.2025.111413_b12) 2020 Khalil (10.1016/j.cie.2025.111413_b29) 2016; 30 Achterberg (10.1016/j.cie.2025.111413_b2) 2005; 33 IBM (10.1016/j.cie.2025.111413_b26) 2023 |
| References_xml | – volume: 115 year: 2023 ident: b18 article-title: Scheduling of Multi-Robot job shop systems in dynamic environments: Mixed-Integer linear programming and constraint programming approaches publication-title: Omega – year: 2023 ident: b47 article-title: Job shop scheduling problem solver – volume: 58 start-page: 527 year: 1952 end-page: 535 ident: b52 article-title: Some aspects of the sequential design of experiments publication-title: Bulletin of the American Mathematical Society – year: 2012 ident: b49 article-title: Constraint-based scheduling applying constraint programming to scheduling problems – volume: 263 year: 2023 ident: b53 article-title: Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches publication-title: International Journal of Production Economics – start-page: 71 year: 2019 end-page: 77 ident: b65 article-title: Refining constraint weighting publication-title: 2019 IEEE 31st international conference on tools with artificial intelligence – year: 2023 ident: b46 article-title: FDS experimental results – volume: 37 start-page: 12444 year: 2023 end-page: 12452 ident: b30 article-title: Large-State reinforcement learning for Hyper-Heuristics publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – reference: Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. In – volume: vol. 2 start-page: 283 year: 1992 end-page: 292 ident: b68 article-title: A genetic algorithm applicable to large-scale job-shop problems publication-title: Parallel problem solving from nature 2 – volume: vol. 24 start-page: 2249 year: 2011 end-page: 2257 ident: b14 article-title: An empirical evaluation of Thompson sampling publication-title: Advances in neural information processing systems – year: 2023 ident: b60 article-title: Resource-Constrained project scheduling – volume: 157 year: 2008 ident: b38 article-title: A constraint programming approach for the resource-constrained project scheduling problem publication-title: Annals of Operations Research – volume: 24 start-page: 67 year: 2000 end-page: 100 ident: b21 article-title: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems publication-title: Journal of Automated Reasoning – year: 2025 ident: b55 article-title: OptalCP – volume: 58 start-page: 91 year: 2022 end-page: 118 ident: b50 article-title: An overview of machine learning techniques in constraint solving publication-title: Journal of Intelligent Information Systems – year: 2023 ident: b26 article-title: CP Optimizer – reference: Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an efficient SAT solver. In – volume: 33 start-page: 42 year: 2005 end-page: 54 ident: b2 article-title: Branching rules revisited publication-title: Operations Research Letters – year: 1995 ident: b5 article-title: Finding cuts in the TSP (A preliminary report) – year: 2022 ident: b17 article-title: Online learning of variable ordering heuristics for constraint optimisation problems publication-title: Annals of Mathematics and Artificial Intelligence – volume: 26 start-page: 9 year: 2020 end-page: 16 ident: b28 article-title: Why tuning the control parameters of metaheuristic algorithms is so important for fair comparison? publication-title: Mendel – volume: 32 year: 2018 ident: b66 article-title: Learning robust search strategies using a Bandit-Based approach publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 172 year: 2022 ident: b25 article-title: Constraint programming and constructive heuristics for parallel machine scheduling with sequence-dependent setups and common servers publication-title: Computers & Industrial Engineering – volume: 34 start-page: 391 year: 1988 end-page: 401 ident: b3 article-title: The shifting bottleneck procedure for job shop scheduling publication-title: Management Science – start-page: 417 year: 1998 end-page: 431 ident: b56 article-title: Using constraint programming and local search methods to solve vehicle routing problems publication-title: International conference on principles and practice of constraint programming – year: 2012 ident: b62 article-title: Global constraints in scheduling – volume: 123 year: 2020 ident: b40 article-title: Mixed integer linear programming and constraint programming models for the online printing shop scheduling problem publication-title: Computers & Operations Research – reference: (pp. 1–10). – year: 2023 ident: b54 article-title: Optalcp – start-page: 464 year: 2013 end-page: 480 ident: b39 article-title: Bandit-based search for constraint programming publication-title: International conference on principles and practice of constraint programming – volume: vol. 325 start-page: 479 year: 2020 end-page: 486 ident: b64 article-title: Learning variable ordering heuristics with Multi-Armed bandits and restarts publication-title: ECAI 2020 - 24th European conference on artificial intelligence – start-page: 74 year: 2015 end-page: 90 ident: b7 article-title: Embedding decision trees and random forests in constraint programming publication-title: Integration of AI and OR techniques in constraint programming – volume: 119 start-page: 557 year: 1999 end-page: 581 ident: b10 article-title: Constraint satisfaction problems: Algorithms and applications publication-title: European Journal of Operational Research – start-page: 392 year: 2021 end-page: 409 ident: b13 article-title: SeaPearl: A constraint programming solver guided by reinforcement learning publication-title: Integration of constraint programming, artificial intelligence, and operations research – volume: 168 year: 2022 ident: b1 article-title: A new hybridization of adaptive large neighborhood search with constraint programming for open shop scheduling with sequence-dependent setup times publication-title: Computers & Industrial Engineering – volume: 39 start-page: 3331 year: 2012 end-page: 3343 ident: b24 article-title: A constraint programming based column generation approach to nurse rostering problems publication-title: Computers & Operations Research – start-page: 121 year: 2008 end-page: 151 ident: b41 article-title: Multi-Armed Bandit problems publication-title: Foundations and applications of sensor management – year: 2014 ident: b34 article-title: Algorithms for multi-armed bandit problems – volume: 173 start-page: 1592 year: 2009 end-page: 1614 ident: b35 article-title: Reasoning from last conflict(s) in constraint programming publication-title: Artificial Intelligence – volume: 150 year: 2020 ident: b23 article-title: Resource-constrained multi-project scheduling with activity and time flexibility publication-title: Computers & Industrial Engineering – start-page: 123 year: 2016 end-page: 140 ident: b37 article-title: Learning rate based branching heuristic for SAT solvers publication-title: Theory and applications of satisfiability testing – SAT 2016 – reference: (pp. 1–10). Volos, Greece: URL – volume: 38 start-page: 1495 year: 1992 end-page: 1509 ident: b57 article-title: New search spaces for sequencing problems with application to job shop scheduling publication-title: Management Science – volume: 30 year: 2016 ident: b29 article-title: Learning to branch in mixed integer programming publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 121 year: 2020 ident: b15 article-title: Going to the core of hard resource-constrained project scheduling instances publication-title: Computers & Operations Research – volume: 109 start-page: 137 year: 1998 end-page: 141 ident: b16 article-title: Benchmarks for shop scheduling problems publication-title: European Journal of Operational Research – start-page: 437 year: 2015 end-page: 453 ident: b63 article-title: Failure-directed search for constraint-based scheduling publication-title: International conference on integration of constraint programming, artificial intelligence, and operations research – start-page: 228 year: 2012 end-page: 243 ident: b42 article-title: Activity-based search for black-box constraint programming solvers publication-title: International conference on integration of artificial intelligence (AI) and operations research (OR) techniques in constraint programming – year: 2023 ident: b27 article-title: Job shop problem solver – start-page: 340 year: 2025 end-page: 347 ident: b45 article-title: Bottleneck identification in Resource-Constrained project scheduling via constraint relaxation publication-title: Proceedings of the 14th international conference on operations research and enterprise systems - ICORES – year: 2023 ident: b44 article-title: Mixed-Integer programming versus constraint programming for shop scheduling problems: New results and outlook publication-title: INFORMS Journal on Computing – reference: Habet, D., & Terrioux, C. (2018). Conflict History Based Branching Heuristic for CSP Solving. In – volume: 35 start-page: 3931 year: 2021 end-page: 3939 ident: b70 article-title: Parameterizing Branch-and-Bound search trees to learn branching policies publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 557 year: 2004 end-page: 571 ident: b51 article-title: Impact-based search strategies for constraint programming publication-title: International conference on principles and practice of constraint programming – volume: 96 start-page: 205 year: 1997 end-page: 216 ident: b31 article-title: PSPLIB - a project scheduling problem library: OR software - orsep operations research software exchange program publication-title: European Journal of Operational Research – start-page: 562 year: 2013 end-page: 577 ident: b48 article-title: Time-table extended-edge-finding for the cumulative constraint publication-title: Principles and practice of constraint programming – volume: 39 start-page: 11390 year: 2025 end-page: 11398 ident: b67 article-title: Prediction-Based adaptive variable ordering heuristics for constraint satisfaction problems publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: vol. 5 start-page: 81 year: 2005 end-page: 89 ident: b20 article-title: Randomized large neighborhood search for cumulative scheduling publication-title: ICAPS – start-page: 149 year: 2015 end-page: 157 ident: b19 article-title: Simple and scalable time-table filtering for the cumulative constraint publication-title: Principles and practice of constraint programming – volume: 64 start-page: 278 year: 1993 end-page: 285 ident: b59 article-title: Benchmarks for basic scheduling problems publication-title: European Journal of Operational Research – reference: . – start-page: 1859 year: 2022 end-page: 1865 ident: b32 article-title: Best heuristic identification for constraint satisfaction publication-title: 31st international joint conference on artificial intelligence – reference: (pp. 530–535). – volume: 177 year: 2025 ident: b69 article-title: A constraint programming-based lower bounding procedure for the job shop scheduling problem publication-title: Computers & Operations Research – volume: vol. 7 start-page: 131 year: 2007 end-page: 136 ident: b36 article-title: Nogood recording from restarts publication-title: IJCAI – year: 2018 ident: b58 article-title: Reinforcement learning: An introduction – start-page: 802 year: 2009 end-page: 816 ident: b61 article-title: Edge finding filtering algorithm for discrete cumulative resources in publication-title: Principles and practice of constraint programming - CP 2009 – volume: 4 start-page: 53 year: 2001 end-page: 64 ident: b11 article-title: Solving open benchmark instances for the job-shop problem by parallel head–tail adjustments publication-title: Journal of Scheduling – volume: vol. 16 start-page: 146 year: 2004 ident: b9 article-title: Boosting systematic search by weighting constraints publication-title: ECAI – volume: 308 start-page: 990 year: 2023 end-page: 1006 ident: b8 article-title: Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness publication-title: European Journal of Operational Research – year: 2020 ident: b12 article-title: Combining reinforcement learning and constraint programming for combinatorial optimization – start-page: 270 year: 2007 end-page: 283 ident: b33 article-title: On the importance of parameter tuning in text categorization publication-title: Perspectives of systems informatics – start-page: 290 year: 2015 end-page: 296 ident: b6 article-title: Multi-armed bandits for adaptive constraint propagation publication-title: Proceedings of the 24th international joint conference on artificial intelligence – volume: 33 start-page: 42 issue: 1 year: 2005 ident: 10.1016/j.cie.2025.111413_b2 article-title: Branching rules revisited publication-title: Operations Research Letters doi: 10.1016/j.orl.2004.04.002 – ident: 10.1016/j.cie.2025.111413_b43 doi: 10.1145/378239.379017 – volume: 119 start-page: 557 issue: 3 year: 1999 ident: 10.1016/j.cie.2025.111413_b10 article-title: Constraint satisfaction problems: Algorithms and applications publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00364-6 – year: 2023 ident: 10.1016/j.cie.2025.111413_b27 – volume: 32 issue: 1 year: 2018 ident: 10.1016/j.cie.2025.111413_b66 article-title: Learning robust search strategies using a Bandit-Based approach publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v32i1.12211 – volume: 34 start-page: 391 issue: 3 year: 1988 ident: 10.1016/j.cie.2025.111413_b3 article-title: The shifting bottleneck procedure for job shop scheduling publication-title: Management Science doi: 10.1287/mnsc.34.3.391 – volume: 263 year: 2023 ident: 10.1016/j.cie.2025.111413_b53 article-title: Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2023.108958 – volume: vol. 16 start-page: 146 year: 2004 ident: 10.1016/j.cie.2025.111413_b9 article-title: Boosting systematic search by weighting constraints – start-page: 71 year: 2019 ident: 10.1016/j.cie.2025.111413_b65 article-title: Refining constraint weighting – year: 2023 ident: 10.1016/j.cie.2025.111413_b47 – year: 2012 ident: 10.1016/j.cie.2025.111413_b49 – start-page: 228 year: 2012 ident: 10.1016/j.cie.2025.111413_b42 article-title: Activity-based search for black-box constraint programming solvers – start-page: 340 year: 2025 ident: 10.1016/j.cie.2025.111413_b45 article-title: Bottleneck identification in Resource-Constrained project scheduling via constraint relaxation – year: 1995 ident: 10.1016/j.cie.2025.111413_b5 – volume: 177 year: 2025 ident: 10.1016/j.cie.2025.111413_b69 article-title: A constraint programming-based lower bounding procedure for the job shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2024.106964 – volume: 109 start-page: 137 issue: 1 year: 1998 ident: 10.1016/j.cie.2025.111413_b16 article-title: Benchmarks for shop scheduling problems publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00019-2 – start-page: 392 year: 2021 ident: 10.1016/j.cie.2025.111413_b13 article-title: SeaPearl: A constraint programming solver guided by reinforcement learning – ident: 10.1016/j.cie.2025.111413_b22 – volume: 308 start-page: 990 issue: 3 year: 2023 ident: 10.1016/j.cie.2025.111413_b8 article-title: Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2022.11.034 – volume: 37 start-page: 12444 issue: 10 year: 2023 ident: 10.1016/j.cie.2025.111413_b30 article-title: Large-State reinforcement learning for Hyper-Heuristics publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v37i10.26466 – start-page: 290 year: 2015 ident: 10.1016/j.cie.2025.111413_b6 article-title: Multi-armed bandits for adaptive constraint propagation – volume: 38 start-page: 1495 issue: 10 year: 1992 ident: 10.1016/j.cie.2025.111413_b57 article-title: New search spaces for sequencing problems with application to job shop scheduling publication-title: Management Science doi: 10.1287/mnsc.38.10.1495 – volume: 58 start-page: 91 issue: 1 year: 2022 ident: 10.1016/j.cie.2025.111413_b50 article-title: An overview of machine learning techniques in constraint solving publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-021-00666-5 – volume: 26 start-page: 9 issue: 2 year: 2020 ident: 10.1016/j.cie.2025.111413_b28 article-title: Why tuning the control parameters of metaheuristic algorithms is so important for fair comparison? publication-title: Mendel doi: 10.13164/mendel.2020.2.009 – volume: 35 start-page: 3931 issue: 5 year: 2021 ident: 10.1016/j.cie.2025.111413_b70 article-title: Parameterizing Branch-and-Bound search trees to learn branching policies publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v35i5.16512 – start-page: 121 year: 2008 ident: 10.1016/j.cie.2025.111413_b41 article-title: Multi-Armed Bandit problems – volume: vol. 7 start-page: 131 year: 2007 ident: 10.1016/j.cie.2025.111413_b36 article-title: Nogood recording from restarts – start-page: 123 year: 2016 ident: 10.1016/j.cie.2025.111413_b37 article-title: Learning rate based branching heuristic for SAT solvers – year: 2023 ident: 10.1016/j.cie.2025.111413_b60 – ident: 10.1016/j.cie.2025.111413_b4 doi: 10.1145/3292500.3330701 – volume: vol. 2 start-page: 283 year: 1992 ident: 10.1016/j.cie.2025.111413_b68 article-title: A genetic algorithm applicable to large-scale job-shop problems – volume: 115 year: 2023 ident: 10.1016/j.cie.2025.111413_b18 article-title: Scheduling of Multi-Robot job shop systems in dynamic environments: Mixed-Integer linear programming and constraint programming approaches publication-title: Omega doi: 10.1016/j.omega.2022.102770 – volume: 30 issue: 1 year: 2016 ident: 10.1016/j.cie.2025.111413_b29 article-title: Learning to branch in mixed integer programming publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v30i1.10080 – year: 2022 ident: 10.1016/j.cie.2025.111413_b17 article-title: Online learning of variable ordering heuristics for constraint optimisation problems publication-title: Annals of Mathematics and Artificial Intelligence – volume: vol. 5 start-page: 81 year: 2005 ident: 10.1016/j.cie.2025.111413_b20 article-title: Randomized large neighborhood search for cumulative scheduling – volume: 96 start-page: 205 issue: 1 year: 1997 ident: 10.1016/j.cie.2025.111413_b31 article-title: PSPLIB - a project scheduling problem library: OR software - orsep operations research software exchange program publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00170-1 – volume: 64 start-page: 278 issue: 2 year: 1993 ident: 10.1016/j.cie.2025.111413_b59 article-title: Benchmarks for basic scheduling problems publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(93)90182-M – year: 2012 ident: 10.1016/j.cie.2025.111413_b62 – volume: 24 start-page: 67 issue: 1 year: 2000 ident: 10.1016/j.cie.2025.111413_b21 article-title: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems publication-title: Journal of Automated Reasoning doi: 10.1023/A:1006314320276 – start-page: 557 year: 2004 ident: 10.1016/j.cie.2025.111413_b51 article-title: Impact-based search strategies for constraint programming – year: 2023 ident: 10.1016/j.cie.2025.111413_b44 article-title: Mixed-Integer programming versus constraint programming for shop scheduling problems: New results and outlook publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.2023.1287 – volume: vol. 24 start-page: 2249 year: 2011 ident: 10.1016/j.cie.2025.111413_b14 article-title: An empirical evaluation of Thompson sampling – volume: 58 start-page: 527 issue: 5 year: 1952 ident: 10.1016/j.cie.2025.111413_b52 article-title: Some aspects of the sequential design of experiments publication-title: Bulletin of the American Mathematical Society doi: 10.1090/S0002-9904-1952-09620-8 – volume: 121 year: 2020 ident: 10.1016/j.cie.2025.111413_b15 article-title: Going to the core of hard resource-constrained project scheduling instances publication-title: Computers & Operations Research doi: 10.1016/j.cor.2020.104976 – start-page: 437 year: 2015 ident: 10.1016/j.cie.2025.111413_b63 article-title: Failure-directed search for constraint-based scheduling – volume: 4 start-page: 53 issue: 1 year: 2001 ident: 10.1016/j.cie.2025.111413_b11 article-title: Solving open benchmark instances for the job-shop problem by parallel head–tail adjustments publication-title: Journal of Scheduling doi: 10.1002/1099-1425(200101/02)4:1<53::AID-JOS59>3.0.CO;2-Y – year: 2023 ident: 10.1016/j.cie.2025.111413_b26 – year: 2023 ident: 10.1016/j.cie.2025.111413_b46 – start-page: 464 year: 2013 ident: 10.1016/j.cie.2025.111413_b39 article-title: Bandit-based search for constraint programming – volume: 157 year: 2008 ident: 10.1016/j.cie.2025.111413_b38 article-title: A constraint programming approach for the resource-constrained project scheduling problem publication-title: Annals of Operations Research – start-page: 562 year: 2013 ident: 10.1016/j.cie.2025.111413_b48 article-title: Time-table extended-edge-finding for the cumulative constraint – start-page: 802 year: 2009 ident: 10.1016/j.cie.2025.111413_b61 article-title: Edge finding filtering algorithm for discrete cumulative resources in O(knlogn) – volume: 168 year: 2022 ident: 10.1016/j.cie.2025.111413_b1 article-title: A new hybridization of adaptive large neighborhood search with constraint programming for open shop scheduling with sequence-dependent setup times publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108128 – volume: 39 start-page: 11390 issue: 11 year: 2025 ident: 10.1016/j.cie.2025.111413_b67 article-title: Prediction-Based adaptive variable ordering heuristics for constraint satisfaction problems publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v39i11.33239 – start-page: 149 year: 2015 ident: 10.1016/j.cie.2025.111413_b19 article-title: Simple and scalable time-table filtering for the cumulative constraint – year: 2023 ident: 10.1016/j.cie.2025.111413_b54 – volume: 150 year: 2020 ident: 10.1016/j.cie.2025.111413_b23 article-title: Resource-constrained multi-project scheduling with activity and time flexibility publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106857 – start-page: 74 year: 2015 ident: 10.1016/j.cie.2025.111413_b7 article-title: Embedding decision trees and random forests in constraint programming – volume: 39 start-page: 3331 issue: 12 year: 2012 ident: 10.1016/j.cie.2025.111413_b24 article-title: A constraint programming based column generation approach to nurse rostering problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2012.04.018 – volume: 123 year: 2020 ident: 10.1016/j.cie.2025.111413_b40 article-title: Mixed integer linear programming and constraint programming models for the online printing shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2020.105020 – start-page: 1859 year: 2022 ident: 10.1016/j.cie.2025.111413_b32 article-title: Best heuristic identification for constraint satisfaction – volume: vol. 325 start-page: 479 year: 2020 ident: 10.1016/j.cie.2025.111413_b64 article-title: Learning variable ordering heuristics with Multi-Armed bandits and restarts – start-page: 417 year: 1998 ident: 10.1016/j.cie.2025.111413_b56 article-title: Using constraint programming and local search methods to solve vehicle routing problems – year: 2020 ident: 10.1016/j.cie.2025.111413_b12 – year: 2025 ident: 10.1016/j.cie.2025.111413_b55 – volume: 173 start-page: 1592 issue: 18 year: 2009 ident: 10.1016/j.cie.2025.111413_b35 article-title: Reasoning from last conflict(s) in constraint programming publication-title: Artificial Intelligence doi: 10.1016/j.artint.2009.09.002 – start-page: 270 year: 2007 ident: 10.1016/j.cie.2025.111413_b33 article-title: On the importance of parameter tuning in text categorization – year: 2018 ident: 10.1016/j.cie.2025.111413_b58 – year: 2014 ident: 10.1016/j.cie.2025.111413_b34 – volume: 172 year: 2022 ident: 10.1016/j.cie.2025.111413_b25 article-title: Constraint programming and constructive heuristics for parallel machine scheduling with sequence-dependent setups and common servers publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108586 |
| SSID | ssj0004591 |
| Score | 2.4592643 |
| Snippet | Failure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space,... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111413 |
| SubjectTerms | Constraint Programming Discrete optimization Heuristics Reinforcement learning Scheduling Tree search |
| Title | Reinforcement learning for search tree size minimization in Constraint Programming: New results on scheduling benchmarks |
| URI | https://dx.doi.org/10.1016/j.cie.2025.111413 |
| Volume | 209 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcKBQQpYB84ESVVeokdsytpUWAUIVQqVZcoqxjq2k3odpsqxX_hf_K-FW7hUr0gLSKVk7izWY-fZ4ZzwOh1wRWbarqJqGC5UkuGpVMac6TNCONFJyRxvghjz6zg4NyMuFfRqNfPhfmYsb6vlwu-dl_FTWMgbB16uwtxH05KQzAdxA6HEHscPwnwX-VphiqMH4_3xXCRks6F4feiN4a2p9ySxcW6Vwmpsv_G0zTiIXOINCBW51LiNZxkGCZn8_s_gLYxLBGmVT2Kfz5466enw6xouu7RQwGW21oECJDAcTgh21748c-amd2477zp_zIXueCieeBMuEefWp7Jg2jf9cMCqox3z2NXRmkcDl9gfEymiZaJYzpmaQ8Ilig5twmr_7B_dYNcTIGThzr2cfh2qt1tq-tf5dRiT7g7aSCKSo9RWWnuINWCSs4kObqzsf9yaeoHL1tyeif22-bmwDCa8_xd8UnUmYOH6IHzgrBOxY9j9BI9utozVkk2PH9sI7uR-UqH6PlFWhhDy0MQ9hCC2toYQ0tHEMLtz0O0MIRtN5iABZ2wMJwZQAWDsB6gr693z989yFxnTsSAeLKEm318iwrVE62U0GLqS5Lp7gAY1YoykTdqEKVGaj7sqhLWZeNoKUg8OFZwQTLnqKV_kcvnyGcpkoWDWG1KmVOdQUETSGgeMErFYLyDfTGv9bqzBZoqW4U5AbK_YuvnIZpNccKQHTzbc9v8xub6F7A9gu0spify5forrhYtMP8lUPQbzrxnB8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+for+search+tree+size+minimization+in+Constraint+Programming%3A+New+results+on+scheduling+benchmarks&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Heinz%2C+Vil%C3%A9m&rft.au=Vil%C3%ADm%2C+Petr&rft.au=Hanz%C3%A1lek%2C+Zden%C4%9Bk&rft.date=2025-11-01&rft.issn=0360-8352&rft.volume=209&rft.spage=111413&rft_id=info:doi/10.1016%2Fj.cie.2025.111413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111413 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |