DS-ADMM++: A Novel Distributed Quantized ADMM to Speed up Differentially Private Matrix Factorization

Matrix factorization is a powerful method to implement collaborative filtering recommender systems. This article addresses two major challenges, privacy and efficiency, which matrix factorization is facing. We based our work on DS-ADMM, a distributed matrix factorization algorithm with decent effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems Jg. 33; H. 6; S. 1289 - 1302
Hauptverfasser: Zhang, Feng, Xue, Erkang, Guo, Ruixin, Qu, Guangzhi, Zhao, Gansen, Zomaya, Albert Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1045-9219, 1558-2183
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix factorization is a powerful method to implement collaborative filtering recommender systems. This article addresses two major challenges, privacy and efficiency, which matrix factorization is facing. We based our work on DS-ADMM, a distributed matrix factorization algorithm with decent efficiency, to achieve the following two pieces of work: (1) Integrated local differential privacy paradigm into DS-ADMM to provide the privacy-preserving property; (2) Introduced a stochastic quantized function to reduce transmission overheads in ADMM to further improve efficiency. We named our work DS-ADMM++, in which one '+' refers to differential privacy, and the other '+' refers to quantized techniques. DS-ADMM++ is the first to perform efficient and private matrix factorization under the scenarios of differential privacy and DS-ADMM. We conducted experiments with benchmark data sets to demonstrate that our approach provides differential privacy and excellent scalability with a decent loss of accuracy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2021.3110104