Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network

In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water quality prediction is of critical importance. However, traditional water quality prediction models face limitations in handling complex spatiotemporal patterns. To address this challeng...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of agricultural and biological engineering Ročník 18; číslo 1; s. 279 - 291
Hlavní autoři: Xiang, Tianqi, Guo, Xiangyun, Chi, Junjie, Gao, Juan, Zhang, Luwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing International Journal of Agricultural and Biological Engineering (IJABE) 01.02.2025
Témata:
ISSN:1934-6344, 1934-6352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water quality prediction is of critical importance. However, traditional water quality prediction models face limitations in handling complex spatiotemporal patterns. To address this challenge, a prediction model was proposed for water quality, namely an adaptive multi-channel temporal graph convolutional network (AMTGCN). The AMTGCN integrates adaptive graph construction, multi-channel spatiotemporal graph convolutional network, and fusion layers, and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data. Onsite aquaculture water quality data and the metrics MAE, RMSE, MAPE, and R2 were collected to validate the AMTGCN. The results show that the AMTGCN presents an average improvement of 34.01%, 34.59%, 36.05%, and 17.71% compared to LSTM, respectively; an average improvement of 64.84%, 56.78%, 64.82%, and 153.16% compared to the STGCN, respectively; an average improvement of 55.25%, 48.67%, 57.01%, and 209.00% compared to GCN-LSTM, respectively; and an average improvement of 7.05%, 5.66%, 7.42%, and 2.47% compared to TCN, respectively. This indicates that the AMTGCN, integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network, could provide an efficient solution for water quality prediction in aquaculture.
AbstractList In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water quality prediction is of critical importance. However, traditional water quality prediction models face limitations in handling complex spatiotemporal patterns. To address this challenge, a prediction model was proposed for water quality, namely an adaptive multi-channel temporal graph convolutional network (AMTGCN). The AMTGCN integrates adaptive graph construction, multi-channel spatiotemporal graph convolutional network, and fusion layers, and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data. Onsite aquaculture water quality data and the metrics MAE, RMSE, MAPE, and R2 were collected to validate the AMTGCN. The results show that the AMTGCN presents an average improvement of 34.01%, 34.59%, 36.05%, and 17.71% compared to LSTM, respectively; an average improvement of 64.84%, 56.78%, 64.82%, and 153.16% compared to the STGCN, respectively; an average improvement of 55.25%, 48.67%, 57.01%, and 209.00% compared to GCN-LSTM, respectively; and an average improvement of 7.05%, 5.66%, 7.42%, and 2.47% compared to TCN, respectively. This indicates that the AMTGCN, integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network, could provide an efficient solution for water quality prediction in aquaculture.
Author Xiang, Tianqi
Chi, Junjie
Gao, Juan
Guo, Xiangyun
Zhang, Luwei
Author_xml – sequence: 1
  givenname: Tianqi
  surname: Xiang
  fullname: Xiang, Tianqi
– sequence: 2
  givenname: Xiangyun
  surname: Guo
  fullname: Guo, Xiangyun
– sequence: 3
  givenname: Junjie
  surname: Chi
  fullname: Chi, Junjie
– sequence: 4
  givenname: Juan
  surname: Gao
  fullname: Gao, Juan
– sequence: 5
  givenname: Luwei
  surname: Zhang
  fullname: Zhang, Luwei
BookMark eNo9UMtuwjAQtCoqFWh_obLUc1I_Q3KsEH1ISL20Z8sxDjgNdrAdEKf-eg20vczujmZHo5mAkXVWA3CPUU44Lvhjm5tW1jonKN0lwnmFZuwKjHFFWVZQTkb_O2M3YBJCi1DBSsrH4HthN9IqY9dQ7gaphi4OXsODjNrDRHQmHmHjvFYyxJNqCCe0bq87KFeyj2av4Ta9mUwlJ5vo0MtoZJdFve2dlx1ce9lvoHJ277ohGmcTZ3U8OP91C64b2QV99zun4PN58TF_zZbvL2_zp2WmCCpjRpUuiNIps2SKz7gkuK4ookXFG0wJ0TOFE1R8VRaakhrXq7qmDKmmLhtGGjoFDxff3rvdoEMUrRt8ChIExRUvaYl5lVTFRaW8C8HrRvTebKU_CozEuWzRinPZ4q9scSqb_gD8NnoE
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor 1. College of Computer Science, Beijing Information Science & Technology University, Beijing 102206, China 2. College of Management Science and Engineering, Beijing Information Science & Technology University, Beijing 102206, China 3. College of Engineering, China Agricultural University, Beijing 100083, China
CorporateAuthor_xml – name: 1. College of Computer Science, Beijing Information Science & Technology University, Beijing 102206, China 2. College of Management Science and Engineering, Beijing Information Science & Technology University, Beijing 102206, China 3. College of Engineering, China Agricultural University, Beijing 100083, China
DBID AAYXX
CITATION
3V.
7QL
7QO
7SN
7ST
7T7
7TM
7U9
7X2
8FD
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BVBZV
C1K
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
L6V
LK8
M0K
M7N
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
RC3
SOI
DOI 10.25165/j.ijabe.20251801.9074
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
East & South Asia Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Genetics Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
East & South Asia Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1934-6352
EndPage 291
ExternalDocumentID 10_25165_j_ijabe_20251801_9074
GeographicLocations China
Laizhou Bay
GeographicLocations_xml – name: Laizhou Bay
– name: China
GroupedDBID 29J
2WC
5VS
7X2
8FE
8FG
8FH
A8Z
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
C1A
CCPQU
CITATION
DYU
EBD
ECGQY
EOJEC
ESTFP
ESX
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
L6V
LK8
M0K
M7P
M7S
ML0
M~E
OBODZ
OK1
OZF
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RIG
RNS
TR2
TUS
3V.
7QL
7QO
7SN
7ST
7T7
7TM
7U9
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
ID FETCH-LOGICAL-c208t-3ce62ce483a4c575a21b9303695f1322e7c12e795d86e32b1bdbb340cfb8f42f3
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450904300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1934-6344
IngestDate Fri Jul 25 12:04:02 EDT 2025
Sat Nov 29 07:56:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c208t-3ce62ce483a4c575a21b9303695f1322e7c12e795d86e32b1bdbb340cfb8f42f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3195838159?pq-origsite=%requestingapplication%
PQID 3195838159
PQPubID 2028921
PageCount 13
ParticipantIDs proquest_journals_3195838159
crossref_primary_10_25165_j_ijabe_20251801_9074
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle International journal of agricultural and biological engineering
PublicationYear 2025
Publisher International Journal of Agricultural and Biological Engineering (IJABE)
Publisher_xml – name: International Journal of Agricultural and Biological Engineering (IJABE)
SSID ssj0064835
Score 2.3158545
Snippet In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water quality prediction is of critical...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 279
SubjectTerms Aquaculture
Artificial neural networks
Deep learning
Energy consumption
Machine learning
Neural networks
Organisms
Prediction models
Spatiotemporal data
Time series
Variables
Water quality
Title Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network
URI https://www.proquest.com/docview/3195838159
Volume 18
WOSCitedRecordID wos001450904300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: M0K
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: BVBZV
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1934-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064835
  issn: 1934-6344
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa6KE90CcCCisfejWbdZxsfKpotaiosIr6Ej1FfkwW0Cq7bBaqXuCvd8ZxVHHppZeRYktRlJnMw_nmG8beGalrU0svIB0roUxihBl5I2QOBhzGhyR0eP84HU-nxfm5LuOBWxthlb1PDI7aLxydkQ9TYkXB8JLp98trQVOj6O9qHKHxmG0SS4IM0L2y98S5KsKATcxRlMhTpboOYYzoeTa8Ory8MpaIMvEa3fQhVYkPg9ND3xwCzvHz_33UF2wrppr8qLONl-wRNK_Ys6PZKtJtwGt2P2kuiHCjmXFzfWPiOv-FCeiKd_2WvzmmteBMS_hoTjD5GW8WtzDnxpslOUseQImCWogbXG4Jo23mIpJezXngxOYEb49mjmtNhz5_w74fT759_CTiSAbhZFKsReoglw7wxRrlMNMzcmQ1RUGd1VTXwtiNUOjMFzmk0o6stzZViattUStZp9tso1k0sMO4ltZph5HT-Vz5jGhkAMs3B4X1GjzssmGvi2rZMW9UWLEE7WHJErRX9dqrSHu7bL_XRxW_xLb6q4y9f2-_ZU_pbh0ie59trFc3cMCeuNv1ZbsasM0Pk2n5ZYAGlnweBDML8ivJuwnulydn5c8_9WPhMQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4F1RaGEPcNwmWa8d7wGhClo1ahrlUFA5mX2MQ6vISeO0VU_8I34jM36o6oVbD1wseS3tYefbeXi_-Rbgg1Umt7kKEqOBltr2rLT9YKVK0KKn-NCrOry_jwbjcXp6aiZr8KfthWFaZesTK0cd5p7_kXcjVkWh8BKbz4sLybdG8elqe4VGDYsjvLmmkq38NPxK9v2o1MH-yZdD2dwqIL3qpSsZeUyUR51GVntKVqzqO8OO3MQ5l2Y48H16mDikCUbK9V1wLtI9n7s01yqPaN4HsK4Z7B1YnwyPJz9a35_QrHF9jq1lEmld9yRTDpHE3fPds3PrWJqT3ikw7HJdejcc3o0GVYg7ePq_Lc4zeNIk02KvRv9zWMPiBTzemy4bQRF8Cb_3i18sKVJMhb24tM24uKYUeynqjtIbQYk7elsyA1xwI8BUFPMrnAkb7ILDgahol5KbpAsaLpmFbmeykfWaiUr1WzCBv9nINFbU_PpX8O1eVmATOsW8wNcgjHLeeMoNfEh0iFkoB6lA9Zi6YDDgFnRb22eLWlsko5qsQgsVZRVashYtGaNlC7Zb-2eNrymzW-O_-ffn9_Do8OR4lI2G46O3sMEz1_zzbeislpe4Aw_91eqsXL5rYC3g532D5S8r3zjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCF6KN9qaYE9wHGbZL12vAeEqrYRUUuUA6ByMvsxDq0iJ43TVj3xv_h1zPhDVS_ceuBiyWtpD-u382bsN28B3ltlcpurIDEaaKltz0rbD1aqBC164ode1eH9_WQwHqenp2ayBn_aXhiWVbYxsQrUYe75G3k3YlcUopfYdPNGFjE5HH5aXEg-QYr_tLbHadQQOcabayrfyo-jQ3rXH5QaHn09-CybEwakV710JSOPifKo08hqT4mLVX1nOKibOOcyDQe-TxcThzTBSLm-C85Fuudzl-Za5RHN-wDWKSXXqgPrk9GXyY-WBxKaNa7_aWuZRFrX_cmUTyRx93zv7Nw6tumkeyKJPa5R71LjXWao6G745H9eqKew2STZYr_eFc9gDYvnsLE_XTZGI_gCfh8Vv9hqpJgKe3Fpm3FxTan3UtSdpjeCEnr0tmRluOAGgako5lc4EzbYBdOEqOSYkpunCxouWZ1uZ7Kx-5qJyg1csLC_2eA0VtS6-5fw7V5W4BV0inmBWyCMct54yhl8SHSI2UAHqXD1mLpgMOA2dFscZIvacySjWq1CDhVrFXKyFjkZI2cbdlssZE0MKrNbILz-9-N38IgQkp2Mxsc78JgnrmXpu9BZLS_xDTz0V6uzcvm2QbiAn_eNlb8mQ0Gc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+aquaculture+water+quality+forecasting+using+novel+adaptive+multi-channel+spatial-temporal+graph+convolutional+network&rft.jtitle=International+journal+of+agricultural+and+biological+engineering&rft.au=Xiang%2C+Tianqi&rft.au=Guo%2C+Xiangyun&rft.au=Chi%2C+Junjie&rft.au=Gao%2C+Juan&rft.date=2025-02-01&rft.pub=International+Journal+of+Agricultural+and+Biological+Engineering+%28IJABE%29&rft.issn=1934-6344&rft.eissn=1934-6352&rft.volume=18&rft.issue=1&rft.spage=279&rft.epage=291&rft_id=info:doi/10.25165%2Fj.ijabe.20251801.9074&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-6344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-6344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-6344&client=summon