S152. DIAGNOSTIC CLASSIFICATION OF SCHIZOPHRENIA USING 3D CONVOLUTIONAL NEURAL NETWORK WITH RESTING-STATE FUNCTIONAL MRI

BackgroundSeveral machine-learning (ML) algorithms have been deployed in the diagnostic classification of schizophrenia. Compared to other ML methods, the 3D convolutional neural network (CNN) has an advantage of learning complex and subtle patterns in data and preserving spatial information, which...

Full description

Saved in:
Bibliographic Details
Published in:Schizophrenia bulletin Vol. 46; no. Supplement_1; p. S94
Main Authors: Kim, Harin, Woo Joo, Sung, Ho Joo, Yeon, Lee, Jungsun
Format: Journal Article
Language:English
Published: US Oxford University Press 18.05.2020
Subjects:
ISSN:0586-7614, 1745-1701
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract BackgroundSeveral machine-learning (ML) algorithms have been deployed in the diagnostic classification of schizophrenia. Compared to other ML methods, the 3D convolutional neural network (CNN) has an advantage of learning complex and subtle patterns in data and preserving spatial information, which is a more suitable tool for brain imaging data. Although resting-state functional MRI (rsfMRI) data has been used in previous ML studies relating to the diagnostic classification of schizophrenia, a limited number of studies have been conducted using resting-state functional connectivity resulted from group independent component analysis (ICA) and dual regression. The objective of this study was to investigate whether a successful diagnostic classification of schizophrenia vs. healthy controls could be achieved by the 3D CNN using resting-state networks in which areas with a significant group difference in activity existed.MethodsT1 and rsfMRI data were collected in 46 patients with recent-onset schizophrenia and 22 healthy controls. In the pre-processing steps of rsfMRI, the ICA-based automatic removal of motion artifacts was applied to subject-level ICA results and the resulting rsfMRI data were temporally concatenated for group ICA and dual regression. The executive control and auditory networks had areas with significantly higher activity in the control group compared with the patient group. The independent components (ICs) respective to the executive control and auditory networks were used as input for the 3D CNN model which was developed to discriminate the schizophrenia patients from the healthy controls.ResultsThe 3D CNN model using the executive control and auditory networks as inputs showed classification accuracies of 65~70%, and error rates of 30~35% approximately.DiscussionOur findings suggest that the 3D CNN model using rsfMRI data can be useful for learning patterns implicated in schizophrenia and identifying discriminative patterns of schizophrenia in brain imaging data.
AbstractList BackgroundSeveral machine-learning (ML) algorithms have been deployed in the diagnostic classification of schizophrenia. Compared to other ML methods, the 3D convolutional neural network (CNN) has an advantage of learning complex and subtle patterns in data and preserving spatial information, which is a more suitable tool for brain imaging data. Although resting-state functional MRI (rsfMRI) data has been used in previous ML studies relating to the diagnostic classification of schizophrenia, a limited number of studies have been conducted using resting-state functional connectivity resulted from group independent component analysis (ICA) and dual regression. The objective of this study was to investigate whether a successful diagnostic classification of schizophrenia vs. healthy controls could be achieved by the 3D CNN using resting-state networks in which areas with a significant group difference in activity existed.MethodsT1 and rsfMRI data were collected in 46 patients with recent-onset schizophrenia and 22 healthy controls. In the pre-processing steps of rsfMRI, the ICA-based automatic removal of motion artifacts was applied to subject-level ICA results and the resulting rsfMRI data were temporally concatenated for group ICA and dual regression. The executive control and auditory networks had areas with significantly higher activity in the control group compared with the patient group. The independent components (ICs) respective to the executive control and auditory networks were used as input for the 3D CNN model which was developed to discriminate the schizophrenia patients from the healthy controls.ResultsThe 3D CNN model using the executive control and auditory networks as inputs showed classification accuracies of 65~70%, and error rates of 30~35% approximately.DiscussionOur findings suggest that the 3D CNN model using rsfMRI data can be useful for learning patterns implicated in schizophrenia and identifying discriminative patterns of schizophrenia in brain imaging data.
Author Woo Joo, Sung
Lee, Jungsun
Kim, Harin
Ho Joo, Yeon
AuthorAffiliation 2 Republic of Korea, Navy
3 Asan Medical Center, University of Ulsan College of Medicine
1 Asan Medical Center
AuthorAffiliation_xml – name: 1 Asan Medical Center
– name: 2 Republic of Korea, Navy
– name: 3 Asan Medical Center, University of Ulsan College of Medicine
Author_xml – sequence: 1
  givenname: Harin
  surname: Kim
  fullname: Kim, Harin
  organization: Asan Medical Center
– sequence: 2
  givenname: Sung
  surname: Woo Joo
  fullname: Woo Joo, Sung
  organization: Republic of Korea, Navy
– sequence: 3
  givenname: Yeon
  surname: Ho Joo
  fullname: Ho Joo, Yeon
  organization: Asan Medical Center, University of Ulsan College of Medicine
– sequence: 4
  givenname: Jungsun
  surname: Lee
  fullname: Lee, Jungsun
  organization: Asan Medical Center, University of Ulsan College of Medicine
BookMark eNqNkUtPwzAQhC0EEuXxBzhZ4pzitVM7uSBFIW0tQoLyAImLZacpFJWkJATBv8fQCokbe5nDfjO70hyh_aZtaoTOgIyB-Oyir57MsL7ojdaEwZiCt4dGINyJA4LAPhqRiccdwcE9REd9_0wIuD6nI_SRw4SO8ZUMZkmaFzLEYRzkuZzKMChkmuB0ivNwLh_S23kWJTLAZS6TGWZXOEyTuzQuv6kgxklUZj9S3KfZNb6XxRxnkU1MZk5eBEWEp2US7uCbTJ6gg6Ve9_XpTo9ROY2KcO7E6czejp2KEs9zXG2A1JoTLeqKaE6XRnPNNBcgGFBjeGWEFkZ4djhdADMMFr7r-YaZhdHsGF1uczeDeakXVd28dXqtNt3qRXefqtUr9XfTrJ7UY_uuBGWucIkNON8FdO3rUPdv6rkdusb-rBj44FqMTyxFt1TVtX3f1cvfC0DUd0VqW5HaVaRsRdbkbE3tsPkP_wXWSI_d
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7RV
7XB
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
KB0
M2M
NAPCQ
PHGZM
PHGZT
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
5PM
DOI 10.1093/schbul/sbaa031.218
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Nursing & Allied Health Database (Alumni Edition)
Psychology Database
Nursing & Allied Health Premium
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Psychology

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate SIRS 2020 Abstracts
EISSN 1745-1701
EndPage S94
ExternalDocumentID PMC7234740
10_1093_schbul_sbaa031_218
10.1093/schbul/sbaa031.218
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
123
18M
2WC
4.4
48X
53G
5RE
5VS
5WA
5WD
70D
7RZ
85S
AABZA
AACZT
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPPZ
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACHQT
ACNCT
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CGNQK
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EMOBN
ENERS
EPA
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
KBUDW
KOP
KSI
KSN
M-Z
M49
MHKGH
N9A
NGC
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPA
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJX
TN5
TOX
TR2
TWZ
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YNT
YROCO
YXANX
YZZ
ZKX
~91
7RV
8FI
8FJ
AAFWJ
AAILS
AAYXX
ABPQP
ABUWG
ADCFL
ADNBA
AEHKS
AEMQT
AFFHD
AFKRA
AHGBF
AJBYB
AJNCP
ALXQX
AZQEC
BENPR
CCPQU
CITATION
DWQXO
FYUFA
GNUQQ
JXSIZ
M2M
NAPCQ
PHGZM
PHGZT
PPXIY
PSYQQ
UKHRP
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
5PM
ID FETCH-LOGICAL-c2088-4ab10ea60a7ec0a62fba6a3a6717312bb6cb7a7b7888862d13b31d9489b3bdba3
IEDL.DBID 7RV
ISSN 0586-7614
IngestDate Tue Nov 04 01:49:32 EST 2025
Wed Nov 12 16:30:41 EST 2025
Sat Nov 29 03:58:56 EST 2025
Sat Feb 01 07:44:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2088-4ab10ea60a7ec0a62fba6a3a6717312bb6cb7a7b7888862d13b31d9489b3bdba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1093/schbul/sbaa031.218
PQID 3191423465
PQPubID 6438235
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7234740
proquest_journals_3191423465
crossref_primary_10_1093_schbul_sbaa031_218
oup_primary_10_1093_schbul_sbaa031_218
PublicationCentury 2000
PublicationDate 20200518
PublicationDateYYYYMMDD 2020-05-18
PublicationDate_xml – month: 05
  year: 2020
  text: 20200518
  day: 18
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: Oxford
PublicationTitle Schizophrenia bulletin
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0014962
Score 2.313492
Snippet BackgroundSeveral machine-learning (ML) algorithms have been deployed in the diagnostic classification of schizophrenia. Compared to other ML methods, the 3D...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage S94
SubjectTerms Classification
Magnetic resonance imaging
Medical imaging
Neural networks
Neuroimaging
Poster Session I
Schizophrenia
Title S152. DIAGNOSTIC CLASSIFICATION OF SCHIZOPHRENIA USING 3D CONVOLUTIONAL NEURAL NETWORK WITH RESTING-STATE FUNCTIONAL MRI
URI https://www.proquest.com/docview/3191423465
https://pubmed.ncbi.nlm.nih.gov/PMC7234740
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1745-1701
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014962
  issn: 0586-7614
  databaseCode: 7RV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1745-1701
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014962
  issn: 0586-7614
  databaseCode: BENPR
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1745-1701
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014962
  issn: 0586-7614
  databaseCode: M2M
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg48CFHwJEYUw-IC4oaxy7dnJCIUvWiDWp0nSruES244hJqBvrhvjzeU7csV4QEpdEURzL0vfy_D4_-30Ivfc742upQk9Pus5jBHiKbFkLnMeXvJN8Qnjbi02IoghXq2juFtw2blvl1if2jrq91HaNfExtIbKAMj75dPXDs6pRNrvqJDQeon1iY2OwZ1Gd3WURWNQLivqTkHtA15k7NAMkfgzUUd1-H2-UlGDWR4EV_bg3Me0cdrMx5-6OyXtTUPb0fwf_DD1xwSeOB2t5jh6Y9Qv0awGT6xE-zuOTolzUeYKT0xh8bObOGOMyw4tkmn8t59MqLfIYW6mOE0yPcVIWZ-Xpcqini4t0WfW3-rysvuDzvJ5iwLeGxt6ijusUZ8sicY1nVf4SLbO0Tqae02PwdADOyGNSEd9I7kthNEAZdEpySSW3mXwSKMW1ElIoy6qBKLWEKkraiIWRoqpVkr5Ce-vLtXmNsGgDoZiGcEsTZoyJWGQ6CH2CiEhJQzNCH7dgNFdD2Y1mSJfTZoCucdA1AN0IfQC8_qnhwRafxv2rm-YPOCMkdmC-69HW4N59s7741tfiFvChYP6bv3f8Fj0OLE-3VV_DA7R3c31r3qFH-ufNxeb6sDfaQ7T_OS3mFTzNghlc63L1Gyfu8q8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwFiSwEfgAtKN7G9cXJAKMpummi3SZXNtlUvwXYcUanalm7L40_xGxnnUboXxKUHTjnEsZL4m5fHMx9Cb-1a20pIz1KjuraYA3GKqFgFMY8t3Fq4I8etGrIJnqbe0ZG_v4F-9bUw5lhlrxMbRV2dKbNHPqSmERmhzB19Ov9qGdYok13tKTRaWEz1z-8Qsq0-JmNY33eERJMijK2OVcBSBETKYkI6thauLbhW8EKklsIVVLgmH-0QKV0lueDSxIbg7lcOldSpfOb5kspKCgrz3kF3QY87Jtjj-cF11oL5DYGpPfJci4Pd64p0bJ8OIVSVV6fDlRQCxGiHGJKRG4ZwrbjO-LjrJzRvmLzo0f_2sx6jh51zjYNWGp6gDb18in7MwXnYweMk2E2zeZGEOJwFYEOiroYaZxGeh3FynO3H-SRNAmyoSHYxHeMwSw-y2aLtF4zTySJvLsVhlk_xYVLEGPBbwGBrXgTFBEeLNOwG7-XJM7S4lY99jjaXZ0v9AmFeES6ZAndSOUxr7TNf1-DaAWiEoJ4eoA_94pfnbVuRsj0OQMsWKmUHlRKgMkDvAR__NHC7x0PZ6aJV-QcMA8TXYHU9o-kxvn5nefKl6TXO4UHO7K2_T_wG3Y-LvVk5S9LpS_SAmD0J0-HW20ablxdX-hW6p75dnqwuXjcCg9Hn2wbdb7jiTFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S152.+DIAGNOSTIC+CLASSIFICATION+OF+SCHIZOPHRENIA+USING+3D+CONVOLUTIONAL+NEURAL+NETWORK+WITH+RESTING-STATE+FUNCTIONAL+MRI&rft.jtitle=Schizophrenia+bulletin&rft.au=Kim%2C+Harin&rft.au=Woo+Joo%2C+Sung&rft.au=Ho+Joo%2C+Yeon&rft.au=Lee%2C+Jungsun&rft.date=2020-05-18&rft.pub=Oxford+University+Press&rft.issn=0586-7614&rft.eissn=1745-1701&rft.volume=46&rft.issue=Supplement_1&rft.spage=S94&rft.epage=S94&rft_id=info:doi/10.1093%2Fschbul%2Fsbaa031.218&rft.externalDocID=10.1093%2Fschbul%2Fsbaa031.218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0586-7614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0586-7614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0586-7614&client=summon