ID 129 – EEG characteristics in “eyes open” vs “eyes closed” conditions: Small world network architecture in healthy aging and age-related brain degeneration

Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects respect to normal elderly (Nold). EEG were recorded in 30 Nold, 30 MCI, 30 AD during EC and EO....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology Jg. 127; H. 3; S. e125
Hauptverfasser: Miraglia, F., Vecchio, F., Rossini, P.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2016
Schlagworte:
ISSN:1388-2457, 1872-8952
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects respect to normal elderly (Nold). EEG were recorded in 30 Nold, 30 MCI, 30 AD during EC and EO. Undirected and weighted cortical brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity was used to weight the network. In Nold, EO condition presented more random network (higher SW) in alpha bands and more regular organization (lower SW) in beta2 and gamma bands. In MCI, SW trend was the same, except for delta and theta bands with more ordered organization. AD showed similar trend of Nold, but with less fluctuations between the conditions. Furthermore, in both conditions, MCI SW architecture presented midway properties between AD and Nold. In low frequencies, Nold showed more random network organization, while SW parameter displayed a more ordered architecture with disease progression. Small world properties had different patterns in pathological aging in open eyes, with different trends in EEG frequency bands. Graph theory provides an excellent tool to characterize neuronal network capacities from coupling parameters of time-varying signals.
AbstractList Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects respect to normal elderly (Nold). EEG were recorded in 30 Nold, 30 MCI, 30 AD during EC and EO. Undirected and weighted cortical brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity was used to weight the network. In Nold, EO condition presented more random network (higher SW) in alpha bands and more regular organization (lower SW) in beta2 and gamma bands. In MCI, SW trend was the same, except for delta and theta bands with more ordered organization. AD showed similar trend of Nold, but with less fluctuations between the conditions. Furthermore, in both conditions, MCI SW architecture presented midway properties between AD and Nold. In low frequencies, Nold showed more random network organization, while SW parameter displayed a more ordered architecture with disease progression. Small world properties had different patterns in pathological aging in open eyes, with different trends in EEG frequency bands. Graph theory provides an excellent tool to characterize neuronal network capacities from coupling parameters of time-varying signals.
Objective Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects respect to normal elderly (Nold). Methods EEG were recorded in 30 Nold, 30 MCI, 30 AD during EC and EO. Undirected and weighted cortical brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity was used to weight the network. Results In Nold, EO condition presented more random network (higher SW) in alpha bands and more regular organization (lower SW) in beta2 and gamma bands. In MCI, SW trend was the same, except for delta and theta bands with more ordered organization. AD showed similar trend of Nold, but with less fluctuations between the conditions. Furthermore, in both conditions, MCI SW architecture presented midway properties between AD and Nold. In low frequencies, Nold showed more random network organization, while SW parameter displayed a more ordered architecture with disease progression. Conclusions Small world properties had different patterns in pathological aging in open eyes, with different trends in EEG frequency bands. Key message Graph theory provides an excellent tool to characterize neuronal network capacities from coupling parameters of time-varying signals.
Author Miraglia, F.
Vecchio, F.
Rossini, P.M.
Author_xml – sequence: 1
  givenname: F.
  surname: Miraglia
  fullname: Miraglia, F.
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
– sequence: 2
  givenname: F.
  surname: Vecchio
  fullname: Vecchio, F.
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
– sequence: 3
  givenname: P.M.
  surname: Rossini
  fullname: Rossini, P.M.
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
BookMark eNqVkUFuFDEQRVsoSCSBG7DwBbqx3fZ0GyEkFIYQKRKLwNpyytXTnjj2yO4EzS53YAtr7pWTYGsQO4RY-eu76tn166Q5CjFg07xktGOUrV5tO_Au7OaOUyY7xjrB5ZPmmI0Db0cl-VHR_Ti2XMjhWXOS85ZSOlDBj5ufF-8J44o8Pnwj6_U5gdkkAwsmlxcHmbhQrr7jHjOJOwyPDz_Iff5jgY8ZbTUhBusWF0N-Ta5ujffka0zekoBLETfEJJjdgrDcJazQGY1f5j0xGxc2xARbFLYJvVnQkutkSo3FDQZMpmKfN08n4zO--H2eNl8-rD-ffWwvP51fnL27bIHTUbYCBzFOApWRYLBXQOXKjEJx1tthNcAglLWyVytknDE5qGpJUIpOOF2D6U8bceBCijknnPQuuVuT9ppRXcPWW30IW9ewNWO6hF3a3h7asPzt3mHSGRwGQOtSGVrb6P4XUIscGH9Tk97GuxTK3JrpzDXVV3WfdZ1MFkhPxwJ483fAv9__BZgru8s
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
DOI 10.1016/j.clinph.2015.11.425
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage e125
ExternalDocumentID 10_1016_j_clinph_2015_11_425
S1388245715015308
1_s2_0_S1388245715015308
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
AADPK
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
LCYCR
ZA5
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c2085-4e748f4e9a5cae39c056a849213d767c749dd5396e12115797c745c990fefbca3
ISSN 1388-2457
IngestDate Sat Nov 29 07:04:02 EST 2025
Fri Feb 23 02:25:09 EST 2024
Sun Feb 23 10:20:04 EST 2025
Tue Oct 14 19:30:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2085-4e748f4e9a5cae39c056a849213d767c749dd5396e12115797c745c990fefbca3
ParticipantIDs crossref_primary_10_1016_j_clinph_2015_11_425
elsevier_sciencedirect_doi_10_1016_j_clinph_2015_11_425
elsevier_clinicalkeyesjournals_1_s2_0_S1388245715015308
elsevier_clinicalkey_doi_10_1016_j_clinph_2015_11_425
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationTitle Clinical neurophysiology
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
SSID ssj0007042
Score 2.1594024
Snippet Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive...
Objective Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in mild cognitive...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e125
SubjectTerms Neurology
Title ID 129 – EEG characteristics in “eyes open” vs “eyes closed” conditions: Small world network architecture in healthy aging and age-related brain degeneration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245715015308
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245715015308
https://dx.doi.org/10.1016/j.clinph.2015.11.425
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiEuiKcoL-2Bm-XIjh-75lYlAQKkqmipcrMc7zh1VZwoLlF763_gCmf-V_8Dd2YfdpymqIDExUrGu35kvszO7M58S8hLyMYwTgDDVHA82wfm21EmhI0jOR_zBDxQBKYHH9jODh-Not1W62dVC7M4ZkXBT0-j2X9VNcpQ2bJ09i_UXV8UBfgZlY5HVDse_0jxg57lylDfZDF4Vr__Rtb3rvAy50XdoAtnknh2hvbHSHrWorx0Oj2eliCWDTCKFjrZS04p7H2WC9yKfNUqdF65tbJCgbfTBZdnlt4VSVHETsBWpTTSCZY7VVgCJooFuwZLRaFQlW8q9k01GbOyGjDM58nEpP3WmcoHCJvDfLoi-4guQa42sbJ228PmjIcbLlO-jJH2pMp9TWxdW3FNMWDg6jVsMri6tNqM79XXtbFDT2MctWVJ6kyuU7kBDihtv-rdpOrud9-7dtlpO_aefBr5MOhZ4-jh8NXGOtCKy07sxGtNb5DNDgsiNMab24P-6F3tQjBH7fpUv2hV86kSE9ef72qfquEn7d8ld0yAQ7c1MO-RFhT3ya2hSeF4QH4MehTxSS_Ov1JEJr2ETJoXeOqbBB2VmLw4_04XZS3SOJTCJQJfUYU_qvBHDf5oE3_yogZ_VOGPIv5oA39U4Y828feQfHrd3---tc1uIXYq95lVdoZnPkRJkKKNiVJ07RPuRx3XEyxkKfMjIQIvCkGyGgYskqIgRW8sQ4OVJt4jslFMC3hM6DgSHDJgjnC5D1nIE0cGoRBwHgqAbIvY1e8dzzQpTFxlSx7FWj-x1A_G1zHqZ4sElVLiquAZh-gYkXdNP3ZVPyiNuSnj3yGr2dO40tpFvvaeT_75nk_J7eW_9RnZOJl_gefkZro4ycv5CwPxX_yI754
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ID+129+%E2%80%93+EEG+characteristics+in+%E2%80%9Ceyes+open%E2%80%9D+vs+%E2%80%9Ceyes+closed%E2%80%9D+conditions%3A+Small+world+network+architecture+in+healthy+aging+and+age-related+brain+degeneration&rft.jtitle=Clinical+neurophysiology&rft.au=Miraglia%2C+F&rft.au=Vecchio%2C+F&rft.au=Rossini%2C+P.M&rft.date=2016-03-01&rft.issn=1388-2457&rft.volume=127&rft.issue=3&rft.spage=e125&rft.epage=e125&rft_id=info:doi/10.1016%2Fj.clinph.2015.11.425&rft.externalDBID=ECK1-s2.0-S1388245715015308&rft.externalDocID=1_s2_0_S1388245715015308
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245716X00028%2Fcov150h.gif