q‐frame hash comparison based exact string matching algorithms for DNA sequences
The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of...
Saved in:
| Published in: | Concurrency and computation Vol. 34; no. 9 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
25.04.2022
|
| Subjects: | |
| ISSN: | 1532-0626, 1532-0634 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is 𝒪nm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons. |
|---|---|
| AbstractList | The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is 𝒪nm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons. The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is ð'ªnm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons. The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q ‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last q characters, the character comparisons in the Hash‐q algorithm are replaced with q ‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is . In both approaches, q ‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons. |
| Author | Bulut, Hasan Karcioglu, Abdullah Ammar |
| Author_xml | – sequence: 1 givenname: Abdullah Ammar orcidid: 0000-0002-0907-751X surname: Karcioglu fullname: Karcioglu, Abdullah Ammar organization: Ege University – sequence: 2 givenname: Hasan orcidid: 0000-0002-4872-5698 surname: Bulut fullname: Bulut, Hasan email: hasan.bulut@ege.edu.tr organization: Ege University |
| BookMark | eNp1kM1KAzEUhYNUsK2CjxBw42Zqksn8LUutP1BURNfhTpp0UmYmbZKi3fkIPqNP4tSKC9HVPYvvnHM5A9RrbasQOqVkRAlhF3KlRmlCkgPUp0nMIpLGvPejWXqEBt4vCaGUxLSPHtcfb-_aQaNwBb7C0jYrcMbbFpfg1RyrV5AB--BMu8ANBFntBNQL60yoGo-1dfjyboy9Wm9UK5U_Rocaaq9Ovu8QPV9NnyY30ez--nYynkWSkTyJOJeaQkYAikznmdSc54mU3b9lUah5rGjOE11mjElOUwJpBkWqaZaXZR6XaRYP0dk-d-VsV-2DWNqNa7tKwVJOC5YTzjrqfE9JZ713SouVMw24raBE7BYT3WJit1iHjn6h0gQIxrbBgan_MkR7w4up1fbfYDF5mH7xnyjJfnM |
| CitedBy_id | crossref_primary_10_21597_jist_1404898 crossref_primary_10_1155_2023_3278505 crossref_primary_10_1177_14727978251371190 crossref_primary_10_1016_j_jksuci_2024_102089 |
| Cites_doi | 10.1093/bioinformatics/btu578 10.1016/j.compbiomed.2021.104292 10.1109/ICCITechn.2015.7488063 10.1007/BFb0030780 10.1371/journal.pone.0175500 10.1016/j.imu.2020.100323 10.1016/j.imu.2020.100356 10.1145/2431211.2431212 10.1145/359842.359859 10.1002/cpe.2938 10.1155/2019/7074387 10.1109/access.2019.2914071 10.1016/B978‐0‐444‐88071‐0.50010‐2 10.1016/j.ipl.2007.01.002 10.1007/978-3-319-41168-2_6 10.1002/cpe.5943 10.1007/978-3-540-70600-7_31 10.1002/cpe.5840 10.1145/2980258.2980392 10.1002/cpe.4646 10.1145/79173.79184 10.1147/rd.312.0249 10.1109/ACCESS.2019.2914071 10.1186/1471‐2105‐16‐S9‐S4 10.1002/spe.4380100608 10.12783/dtcse/aiie2017/18233 10.1016/j.compbiomed.2019.103539 10.1186/1471‐2164‐12‐s3‐s8 10.1007/978-3-030-48340-1_38 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6505 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6505 CPE6505 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2085-44cf1a70aa97f87cf4485cc063b99ed3e1845fb722c4160a67a96f178bb83b673 |
| IEDL.DBID | DRFUL |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 02:32:55 EDT 2025 Sat Nov 29 01:41:26 EST 2025 Tue Nov 18 22:37:38 EST 2025 Wed Jan 22 16:25:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2085-44cf1a70aa97f87cf4485cc063b99ed3e1845fb722c4160a67a96f178bb83b673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0907-751X 0000-0002-4872-5698 |
| PQID | 2641928042 |
| PQPubID | 2045170 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2641928042 crossref_primary_10_1002_cpe_6505 crossref_citationtrail_10_1002_cpe_6505 wiley_primary_10_1002_cpe_6505_CPE6505 |
| PublicationCentury | 2000 |
| PublicationDate | 25 April 2022 |
| PublicationDateYYYYMMDD | 2022-04-25 |
| PublicationDate_xml | – month: 04 year: 2022 text: 25 April 2022 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 7 2007; 102 1990; 33 1987; 31 2013; 25 2015; 16 2019; 31 2013; 45 1998 2008 1977; 20 2006 1994 2005 2004 2011; 12 2020; 33 2020; 19 2020; 18 1999 2014; 1 2020 1980; 10 2017; 12 2019 2020; 116 2018 2016 2021; 131 2014; 30 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Charras C (e_1_2_8_13_1) 2004 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Lee J (e_1_2_8_19_1) 2004 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Wu S (e_1_2_8_31_1) 1994 e_1_2_8_30_1 |
| References_xml | – volume: 33 issue: 6 year: 2020 article-title: Dictionary lookup with one genome evolution operation publication-title: Concurr Comput Pract Exper – volume: 19 start-page: 100323 year: 2020 article-title: Stretch profile: a pruning technique to accelerate DNA sequence search publication-title: Inform Med Unlocked – year: 2005 – volume: 30 start-page: 3515 issue: 24 year: 2014 end-page: 3523 article-title: String graph construction using incremental hashing publication-title: Bioinformatics – volume: 31 issue: 21 year: 2019 article-title: A client‐server JavaScript code rewriting‐based framework to detect the XSS worms from online social network publication-title: Concurr Comput Pract Exper – volume: 7 start-page: 69614 year: 2019 end-page: 69637 article-title: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions publication-title: IEEE Access – volume: 12 issue: 4 year: 2017 article-title: A multi‐pattern hash‐binary hybrid algorithm for URL matching in the HTTP protocol publication-title: PloS One – volume: 12 start-page: S8 issue: Suppl 3 year: 2011 article-title: Perfect Hamming code with a hash table for faster genome mapping publication-title: BMC Genomics – start-page: 218 year: 2004 – volume: 1 start-page: 255 year: 2014 article-title: Algorithms for finding patterns in strings publication-title: Algorithms Complex – volume: 31 start-page: 249 issue: 2 year: 1987 end-page: 260 article-title: Efficient randomized pattern‐matching algorithms publication-title: IBM J Res Develop – volume: 45 start-page: 1 issue: 2 year: 2013 end-page: 42 article-title: The exact string matching problem publication-title: A Comprehensive Experimental Evaluation – issue: aiie year: 2018 article-title: Development of a new platform through distributed storage system for the bioinformatics analysis publication-title: DEStech Trans Comput Sci Eng – year: 2016 – volume: 10 start-page: 501 issue: 6 year: 1980 end-page: 506 article-title: Practical fast searching in strings publication-title: Softw Pract Exper – year: 1994 – volume: 131 start-page: 104292 year: 2021 article-title: Improving hash‐q exact string matching algorithm with perfect hashing for DNA sequences publication-title: Comput Biol Med – year: 2019 article-title: Pattern matching for DNA sequencing data using multiple bloom filters publication-title: BioMed Res Int – year: 1998 – volume: 18 start-page: 100296 year: 2020 article-title: Comprehensive comparison of cloud‐based ngs data analysis and alignment tools publication-title: Inform Med Unlocked – volume: 25 start-page: 497 issue: 4 year: 2013 end-page: 509 article-title: Answering biological questions by querying K‐mer databases publication-title: Concurr Comput Pract Exper – volume: 33 start-page: 132 issue: 8 year: 1990 end-page: 142 article-title: A very fast substring search algorithm publication-title: Commun ACM – year: 2020 article-title: Optimizing bitmap index encoding for high performance queries publication-title: Concurr Comput Pract Exper – volume: 102 start-page: 229 issue: 6 year: 2007 end-page: 235 article-title: Fast exact string matching algorithms publication-title: Inf Process Lett – year: 2008 – volume: 16 start-page: 1 issue: 9 year: 2015 end-page: 8 article-title: Fast randomized approximate string matching with succinct hash data structures publication-title: BMC Bioinform – year: 2006 – year: 2004 – volume: 116 start-page: 103539 year: 2020 article-title: Mapping RNA‐seq reads to transcriptomes efficiently based on learning to hash method publication-title: Comput Biol Med – volume: 20 start-page: 762 issue: 10 year: 1977 end-page: 772 article-title: SA fast string searching algorithm publication-title: Commun ACM – year: 2019 – year: 1999 – ident: e_1_2_8_22_1 doi: 10.1093/bioinformatics/btu578 – ident: e_1_2_8_35_1 doi: 10.1016/j.compbiomed.2021.104292 – ident: e_1_2_8_37_1 – start-page: 218 volume-title: Analysis of Fundamental Exact and Inexact Pattern Matching Algorithms. Project Report year: 2004 ident: e_1_2_8_19_1 – ident: e_1_2_8_4_1 doi: 10.1109/ICCITechn.2015.7488063 – ident: e_1_2_8_34_1 doi: 10.1007/BFb0030780 – ident: e_1_2_8_21_1 doi: 10.1371/journal.pone.0175500 – ident: e_1_2_8_17_1 – ident: e_1_2_8_6_1 doi: 10.1016/j.imu.2020.100323 – ident: e_1_2_8_7_1 doi: 10.1016/j.imu.2020.100356 – ident: e_1_2_8_12_1 doi: 10.1145/2431211.2431212 – ident: e_1_2_8_39_1 – ident: e_1_2_8_32_1 – ident: e_1_2_8_36_1 – ident: e_1_2_8_15_1 doi: 10.1145/359842.359859 – ident: e_1_2_8_8_1 doi: 10.1002/cpe.2938 – ident: e_1_2_8_5_1 doi: 10.1155/2019/7074387 – ident: e_1_2_8_2_1 doi: 10.1109/access.2019.2914071 – ident: e_1_2_8_20_1 doi: 10.1016/B978‐0‐444‐88071‐0.50010‐2 – ident: e_1_2_8_29_1 doi: 10.1016/j.ipl.2007.01.002 – ident: e_1_2_8_33_1 doi: 10.1007/978-3-319-41168-2_6 – ident: e_1_2_8_27_1 doi: 10.1002/cpe.5943 – ident: e_1_2_8_30_1 doi: 10.1007/978-3-540-70600-7_31 – ident: e_1_2_8_9_1 doi: 10.1002/cpe.5840 – ident: e_1_2_8_3_1 doi: 10.1145/2980258.2980392 – ident: e_1_2_8_10_1 doi: 10.1002/cpe.4646 – ident: e_1_2_8_16_1 doi: 10.1145/79173.79184 – ident: e_1_2_8_38_1 – ident: e_1_2_8_18_1 doi: 10.1147/rd.312.0249 – ident: e_1_2_8_11_1 doi: 10.1109/ACCESS.2019.2914071 – ident: e_1_2_8_23_1 doi: 10.1186/1471‐2105‐16‐S9‐S4 – ident: e_1_2_8_14_1 doi: 10.1002/spe.4380100608 – ident: e_1_2_8_28_1 doi: 10.12783/dtcse/aiie2017/18233 – volume-title: Handbook of Exact String Matching Algorithms year: 2004 ident: e_1_2_8_13_1 – ident: e_1_2_8_25_1 doi: 10.1016/j.compbiomed.2019.103539 – volume-title: A fast algorithm for multi‐pattern searching year: 1994 ident: e_1_2_8_31_1 – ident: e_1_2_8_24_1 doi: 10.1186/1471‐2164‐12‐s3‐s8 – ident: e_1_2_8_26_1 doi: 10.1007/978-3-030-48340-1_38 |
| SSID | ssj0011031 |
| Score | 2.3132532 |
| Snippet | The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Bioinformatics DNA sequences Gene sequencing Hash based algorithms hash function hash‐based string matching pattern matching Run time (computers) sequence analysis String matching string matching algorithms |
| Title | q‐frame hash comparison based exact string matching algorithms for DNA sequences |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6505 https://www.proquest.com/docview/2641928042 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMcfdHrw4rs4nRJB9FTt0pe0R5kbHmTIcOCtJGnihNnNtYpHP4Kf0U_ik75NQUHw1MsTKEme5Jf2yf8PcOwwT0pP-5ZyYzygaM4tIUNteVo6XqyQyHWcm02wfj-4uwtvyqpKcxem0IeoP7iZzMjXa5PgXKTnc9FQOVVniBfeIixRnLZuA5YuB73hdf0PwRgYFGqp1LKR2yvpWZueV22_b0ZzwvzKqflG01v7zyuuw2qJl-SimA8bsKCSTVirrBtImclbMHj6eHvXpjCLjHg6IrK2IyRmX4uJeuUyI8bUI7knSLV5ySXh4_vJ7CEbPaYEYZdc9i9IXYu9DcNe97ZzZZX2CpY0xpyW60rd5szmPGQ6YFLjSQ0HDplFhKGKHYWHP08LRqlEarO5z3jo6zYLhAgc4TNnBxrJJFG7QBxh0CE2WnshEqAKJA1121VM-CqWttuE06qfI1lqjxsLjHFUqCbTCLsqMl3VhKM6clrobfwQ06qGKiozLo0Q7BBWA1yDmnCSD8qv7aPOTdc89_4auA8r1Nx6sF2Lei1oZLNndQDL8iV7SGeH5bz7BNSA3Rg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSgMxFIYPtRV0412s1wiiq7HTuWUGV6UXFGsppYXuhkwmaQu1alvFpY_gM_oknsytCgqCq9mcQEhyki-Z5P8Bzkxqc25LRxNWiBsUyZgWcE9qtuSmHQokchlGZhO01XL7fa-dg6v0LUysD5EduKnMiOZrleDqQLq0UA3lj-IS-cJegoKFo8jOQ6HWafSa2U8E5WAQy6Uamo7gnmrP6kYpLft9NVog5ldQjVaaxvq_6rgBawlgkko8IjYhJyZbsJ6aN5Akl7eh8_Tx9i7V1SwyZLMh4ZkhIVErW0jEK-Nzomw9JgOCXBtduiRsPHiYjubD-xlB3CW1VoVkt7F3oNeod6vXWmKwoHFlzalZFpdlRnXGPCpdyiXu1bDrkFoCzxOhKXD7Z8uAGgZHbtOZQ5nnyDJ1g8A1A4eau5CfPEzEHhAzUPAQKrU9DxlQuNzwZNkSNHBEyHWrCBdpQ_s8UR9XJhhjP9ZNNnxsKl81VRFOs8jHWHHjh5jDtK_8JOdmPqId4qqLs1ARzqNe-bW8X23X1Xf_r4EnsHLdvWv6zZvW7QGsGuoNhG5phn0I-fn0WRzBMn-Zj2bT42QQfgIT7OEI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSgMxFIYP1Yq4sV6xWjWC6Gp0OrdMcFV6QVFKEQvdDZlMYgu11raKSx_BZ_RJPJlbFRQEV7NJYDjJSb7MnPw_wLFNXSFc5RnSifCAojg3QsGU4Sphu5FEIldRbDZB222_12OdAlxkd2ESfYj8g5vOjHi91gkux5E6n6uGirE8Q75wF6DouMzDrCw2blvdm_wngnYwSORSLcNEcM-0Z03rPOv7fTeaI-ZXUI13mlbpX--4BqspYJJaMiPWoSBHG1DKzBtImsubcPv08faudGkW6fNpn4jckJDonS0i8pWLGdG2HqN7glwbF10SPrx_nAxm_YcpQdwljXaN5NXYW9BtNe_ql0ZqsGAIbc1pOI5QVU5NzhlVPhUKz2o4dEgtIWMysiUe_1wVUssSyG0m9yhnnqpSPwx9O_SovQ2Lo8eR3AFihxoeIq22x5ABpS8spqqOpKEnI2E6ZTjNAh2IVH1cm2AMg0Q32QowVIEOVRmO8pbjRHHjhzaVbKyCNOemAaId4qqPq1AZTuJR-bV_UO809XP3rw0PYbnTaAU3V-3rPVix9BUI0zEstwKLs8mz3Icl8TIbTCcH6Rz8BM1W4IM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=q%E2%80%90frame+hash+comparison+based+exact+string+matching+algorithms+for+DNA+sequences&rft.jtitle=Concurrency+and+computation&rft.au=Abdullah+Ammar+Karcioglu&rft.au=Bulut%2C+Hasan&rft.date=2022-04-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=9&rft_id=info:doi/10.1002%2Fcpe.6505&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |