q‐frame hash comparison based exact string matching algorithms for DNA sequences

The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 34; číslo 9
Hlavní autoři: Karcioglu, Abdullah Ammar, Bulut, Hasan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 25.04.2022
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is 𝒪nm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons.
AbstractList The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is 𝒪nm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons.
The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last qcharacters, the character comparisons in the Hash‐q algorithm are replaced with q‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is ð'ªnm−mqq. In both approaches, q‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons.
The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are developed to speed up the search. Especially, hash‐based exact string matching algorithms are among the most time‐efficient ones. The efficiency of hash‐based approaches depends on the hash function. Hence, perfect hashing plays an essential role in hash‐based string matching. In this study, two q ‐frame hash comparison‐based exact string matching algorithms, Hq‐QF and HqBM‐QF, are proposed. We have used a collision‐free perfect hash function for DNA sequences in the proposed algorithms. In the first approach, after hash values match for the last q characters, the character comparisons in the Hash‐q algorithm are replaced with q ‐frame hash comparison. In the second approach, we improved the first approach by utilizing the shift size indicated at the th entry in the good suffix shift table. Since the number of character comparisons is minimized, the worst‐case time complexity of the proposed algorithms is . In both approaches, q ‐frame hash comparisons replace most character comparisons as a trade‐off. The results show that the proposed approaches are more efficient than the Hash‐q algorithm in terms of runtime efficiency and the number of character comparisons.
Author Bulut, Hasan
Karcioglu, Abdullah Ammar
Author_xml – sequence: 1
  givenname: Abdullah Ammar
  orcidid: 0000-0002-0907-751X
  surname: Karcioglu
  fullname: Karcioglu, Abdullah Ammar
  organization: Ege University
– sequence: 2
  givenname: Hasan
  orcidid: 0000-0002-4872-5698
  surname: Bulut
  fullname: Bulut, Hasan
  email: hasan.bulut@ege.edu.tr
  organization: Ege University
BookMark eNp1kM1KAzEUhYNUsK2CjxBw42Zqksn8LUutP1BURNfhTpp0UmYmbZKi3fkIPqNP4tSKC9HVPYvvnHM5A9RrbasQOqVkRAlhF3KlRmlCkgPUp0nMIpLGvPejWXqEBt4vCaGUxLSPHtcfb-_aQaNwBb7C0jYrcMbbFpfg1RyrV5AB--BMu8ANBFntBNQL60yoGo-1dfjyboy9Wm9UK5U_Rocaaq9Ovu8QPV9NnyY30ez--nYynkWSkTyJOJeaQkYAikznmdSc54mU3b9lUah5rGjOE11mjElOUwJpBkWqaZaXZR6XaRYP0dk-d-VsV-2DWNqNa7tKwVJOC5YTzjrqfE9JZ713SouVMw24raBE7BYT3WJit1iHjn6h0gQIxrbBgan_MkR7w4up1fbfYDF5mH7xnyjJfnM
CitedBy_id crossref_primary_10_21597_jist_1404898
crossref_primary_10_1155_2023_3278505
crossref_primary_10_1177_14727978251371190
crossref_primary_10_1016_j_jksuci_2024_102089
Cites_doi 10.1093/bioinformatics/btu578
10.1016/j.compbiomed.2021.104292
10.1109/ICCITechn.2015.7488063
10.1007/BFb0030780
10.1371/journal.pone.0175500
10.1016/j.imu.2020.100323
10.1016/j.imu.2020.100356
10.1145/2431211.2431212
10.1145/359842.359859
10.1002/cpe.2938
10.1155/2019/7074387
10.1109/access.2019.2914071
10.1016/B978‐0‐444‐88071‐0.50010‐2
10.1016/j.ipl.2007.01.002
10.1007/978-3-319-41168-2_6
10.1002/cpe.5943
10.1007/978-3-540-70600-7_31
10.1002/cpe.5840
10.1145/2980258.2980392
10.1002/cpe.4646
10.1145/79173.79184
10.1147/rd.312.0249
10.1109/ACCESS.2019.2914071
10.1186/1471‐2105‐16‐S9‐S4
10.1002/spe.4380100608
10.12783/dtcse/aiie2017/18233
10.1016/j.compbiomed.2019.103539
10.1186/1471‐2164‐12‐s3‐s8
10.1007/978-3-030-48340-1_38
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6505
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6505
CPE6505
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2085-44cf1a70aa97f87cf4485cc063b99ed3e1845fb722c4160a67a96f178bb83b673
IEDL.DBID DRFUL
ISSN 1532-0626
IngestDate Fri Jul 25 02:32:55 EDT 2025
Sat Nov 29 01:41:26 EST 2025
Tue Nov 18 22:37:38 EST 2025
Wed Jan 22 16:25:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2085-44cf1a70aa97f87cf4485cc063b99ed3e1845fb722c4160a67a96f178bb83b673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0907-751X
0000-0002-4872-5698
PQID 2641928042
PQPubID 2045170
PageCount 17
ParticipantIDs proquest_journals_2641928042
crossref_primary_10_1002_cpe_6505
crossref_citationtrail_10_1002_cpe_6505
wiley_primary_10_1002_cpe_6505_CPE6505
PublicationCentury 2000
PublicationDate 25 April 2022
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 04
  year: 2022
  text: 25 April 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2007; 102
1990; 33
1987; 31
2013; 25
2015; 16
2019; 31
2013; 45
1998
2008
1977; 20
2006
1994
2005
2004
2011; 12
2020; 33
2020; 19
2020; 18
1999
2014; 1
2020
1980; 10
2017; 12
2019
2020; 116
2018
2016
2021; 131
2014; 30
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Charras C (e_1_2_8_13_1) 2004
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Lee J (e_1_2_8_19_1) 2004
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Wu S (e_1_2_8_31_1) 1994
e_1_2_8_30_1
References_xml – volume: 33
  issue: 6
  year: 2020
  article-title: Dictionary lookup with one genome evolution operation
  publication-title: Concurr Comput Pract Exper
– volume: 19
  start-page: 100323
  year: 2020
  article-title: Stretch profile: a pruning technique to accelerate DNA sequence search
  publication-title: Inform Med Unlocked
– year: 2005
– volume: 30
  start-page: 3515
  issue: 24
  year: 2014
  end-page: 3523
  article-title: String graph construction using incremental hashing
  publication-title: Bioinformatics
– volume: 31
  issue: 21
  year: 2019
  article-title: A client‐server JavaScript code rewriting‐based framework to detect the XSS worms from online social network
  publication-title: Concurr Comput Pract Exper
– volume: 7
  start-page: 69614
  year: 2019
  end-page: 69637
  article-title: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions
  publication-title: IEEE Access
– volume: 12
  issue: 4
  year: 2017
  article-title: A multi‐pattern hash‐binary hybrid algorithm for URL matching in the HTTP protocol
  publication-title: PloS One
– volume: 12
  start-page: S8
  issue: Suppl 3
  year: 2011
  article-title: Perfect Hamming code with a hash table for faster genome mapping
  publication-title: BMC Genomics
– start-page: 218
  year: 2004
– volume: 1
  start-page: 255
  year: 2014
  article-title: Algorithms for finding patterns in strings
  publication-title: Algorithms Complex
– volume: 31
  start-page: 249
  issue: 2
  year: 1987
  end-page: 260
  article-title: Efficient randomized pattern‐matching algorithms
  publication-title: IBM J Res Develop
– volume: 45
  start-page: 1
  issue: 2
  year: 2013
  end-page: 42
  article-title: The exact string matching problem
  publication-title: A Comprehensive Experimental Evaluation
– issue: aiie
  year: 2018
  article-title: Development of a new platform through distributed storage system for the bioinformatics analysis
  publication-title: DEStech Trans Comput Sci Eng
– year: 2016
– volume: 10
  start-page: 501
  issue: 6
  year: 1980
  end-page: 506
  article-title: Practical fast searching in strings
  publication-title: Softw Pract Exper
– year: 1994
– volume: 131
  start-page: 104292
  year: 2021
  article-title: Improving hash‐q exact string matching algorithm with perfect hashing for DNA sequences
  publication-title: Comput Biol Med
– year: 2019
  article-title: Pattern matching for DNA sequencing data using multiple bloom filters
  publication-title: BioMed Res Int
– year: 1998
– volume: 18
  start-page: 100296
  year: 2020
  article-title: Comprehensive comparison of cloud‐based ngs data analysis and alignment tools
  publication-title: Inform Med Unlocked
– volume: 25
  start-page: 497
  issue: 4
  year: 2013
  end-page: 509
  article-title: Answering biological questions by querying K‐mer databases
  publication-title: Concurr Comput Pract Exper
– volume: 33
  start-page: 132
  issue: 8
  year: 1990
  end-page: 142
  article-title: A very fast substring search algorithm
  publication-title: Commun ACM
– year: 2020
  article-title: Optimizing bitmap index encoding for high performance queries
  publication-title: Concurr Comput Pract Exper
– volume: 102
  start-page: 229
  issue: 6
  year: 2007
  end-page: 235
  article-title: Fast exact string matching algorithms
  publication-title: Inf Process Lett
– year: 2008
– volume: 16
  start-page: 1
  issue: 9
  year: 2015
  end-page: 8
  article-title: Fast randomized approximate string matching with succinct hash data structures
  publication-title: BMC Bioinform
– year: 2006
– year: 2004
– volume: 116
  start-page: 103539
  year: 2020
  article-title: Mapping RNA‐seq reads to transcriptomes efficiently based on learning to hash method
  publication-title: Comput Biol Med
– volume: 20
  start-page: 762
  issue: 10
  year: 1977
  end-page: 772
  article-title: SA fast string searching algorithm
  publication-title: Commun ACM
– year: 2019
– year: 1999
– ident: e_1_2_8_22_1
  doi: 10.1093/bioinformatics/btu578
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compbiomed.2021.104292
– ident: e_1_2_8_37_1
– start-page: 218
  volume-title: Analysis of Fundamental Exact and Inexact Pattern Matching Algorithms. Project Report
  year: 2004
  ident: e_1_2_8_19_1
– ident: e_1_2_8_4_1
  doi: 10.1109/ICCITechn.2015.7488063
– ident: e_1_2_8_34_1
  doi: 10.1007/BFb0030780
– ident: e_1_2_8_21_1
  doi: 10.1371/journal.pone.0175500
– ident: e_1_2_8_17_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.imu.2020.100323
– ident: e_1_2_8_7_1
  doi: 10.1016/j.imu.2020.100356
– ident: e_1_2_8_12_1
  doi: 10.1145/2431211.2431212
– ident: e_1_2_8_39_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_36_1
– ident: e_1_2_8_15_1
  doi: 10.1145/359842.359859
– ident: e_1_2_8_8_1
  doi: 10.1002/cpe.2938
– ident: e_1_2_8_5_1
  doi: 10.1155/2019/7074387
– ident: e_1_2_8_2_1
  doi: 10.1109/access.2019.2914071
– ident: e_1_2_8_20_1
  doi: 10.1016/B978‐0‐444‐88071‐0.50010‐2
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ipl.2007.01.002
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-319-41168-2_6
– ident: e_1_2_8_27_1
  doi: 10.1002/cpe.5943
– ident: e_1_2_8_30_1
  doi: 10.1007/978-3-540-70600-7_31
– ident: e_1_2_8_9_1
  doi: 10.1002/cpe.5840
– ident: e_1_2_8_3_1
  doi: 10.1145/2980258.2980392
– ident: e_1_2_8_10_1
  doi: 10.1002/cpe.4646
– ident: e_1_2_8_16_1
  doi: 10.1145/79173.79184
– ident: e_1_2_8_38_1
– ident: e_1_2_8_18_1
  doi: 10.1147/rd.312.0249
– ident: e_1_2_8_11_1
  doi: 10.1109/ACCESS.2019.2914071
– ident: e_1_2_8_23_1
  doi: 10.1186/1471‐2105‐16‐S9‐S4
– ident: e_1_2_8_14_1
  doi: 10.1002/spe.4380100608
– ident: e_1_2_8_28_1
  doi: 10.12783/dtcse/aiie2017/18233
– volume-title: Handbook of Exact String Matching Algorithms
  year: 2004
  ident: e_1_2_8_13_1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.compbiomed.2019.103539
– volume-title: A fast algorithm for multi‐pattern searching
  year: 1994
  ident: e_1_2_8_31_1
– ident: e_1_2_8_24_1
  doi: 10.1186/1471‐2164‐12‐s3‐s8
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-030-48340-1_38
SSID ssj0011031
Score 2.3132532
Snippet The importance of string matching is due to its applications in many fields, such as medicine and bioinformatics. Various string matching algorithms are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Bioinformatics
DNA sequences
Gene sequencing
Hash based algorithms
hash function
hash‐based string matching
pattern matching
Run time (computers)
sequence analysis
String matching
string matching algorithms
Title q‐frame hash comparison based exact string matching algorithms for DNA sequences
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6505
https://www.proquest.com/docview/2641928042
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evBifWJ9EUH0FLvNZpvdY7EtHkopxYK3JUmTVqhVu1U8-hP8jf4SJ92HCgqC7GEvCSyTzMw3m8n3AZz6ITfeUEc0sFpTHtYtVVx5VPmOBReDZi29KNwR3W54cxP1sq5Kdxcm5Ycofrg5z1jEa-fgUiXVT9JQ_WAuEF4Ey7DCcNvyEqw0--1BpzhDcAIGKVsqox7i9px61mPVfO73ZPSJML_i1EWiaZf_84kbsJ7BS9JI98MmLJnpFpRz6QaSefI29B_fX9-sa8wiY5mMiS7kCInLa0NiXqSeEyfqMR0RRLWLlksiJ6P72e18fJcQBLuk2W2Qohd7Bwbt1vXlFc3kFah2wpyUc21rUnhSRsKGQlus1AKtEbOoKDJD32DxF1glGNOI2jxZFzKq25oIlQp9VRf-LpSm91OzByTUwp3HesxEWHEYqZTlSvAhPjWJiKcC57mdY51xjzsJjEmcsiazGE0VO1NV4KQY-ZDybfww5jBfqjjzuCRGYIdgNcQYVIGzxaL8Oj--7LXce_-vAw9gjblbDx6nLDiE0nz2ZI5gVT_Pb5PZcbbvPgCZYNwR
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60FfTiW6zPCKKn6HY32-ziqVSLYi1FLPS2JNnECtrWtopHf4K_0V_ipPtQQUGQPexlAiHJzHx5zPcB7HsB006sQuobpSgLKoZKJh0qPcuCi0GznBQKN3izGXQ6YWsKTrJamIQfIj9ws54xidfWwe2B9PEna6ga6CPEF_40FBmuIr8AxdPreruRXyJYBYOELtWlDgL3jHvWcY-ztt-z0SfE_ApUJ5mmvvCvPi7CfAowSTVZEUswpXvLsJCJN5DUl1fg-vH99c3Yp1mkK0ZdonJBQmIzW0z0i1BjYmU9ercEce3k0SUR97f94d24-zAiCHfJabNK8tfYq9Cun93UzmkqsECVleakjClTFtwRIuQm4MrgXs1XClGLDEMdexq3f76R3HUV4jZHVLgIK6bMAykDT1a4twaFXr-n14EEitsbWcfVIe45tJDSMMlZjF9ZIOYpwWE20JFK2cetCMZ9lPAmuxEOVWSHqgR7ueUgYdz4wWYrm6so9blRhNAO4WqAUagEB5NZ-bV9VGud2f_GXw13Yfb85qoRNS6al5sw59oaCIdR19-Cwnj4pLdhRj2P70bDnXQRfgDKB-AB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58IV58i_UZQfQUu93NbnbxJNaiWEopCt6WJJu0Ba21reLRn-Bv9Jc46T6qoCDIHvaSwJJkZr7ZzHwfwKEXMu0kKqK-UYqyMDBUMulQ6VkWXHSalbRRuM4bjfDuLmpOwWneC5PyQxQ_3KxljP21NXDdT0x5whqq-voE8YU_DbPMjwK0ytlqq3ZbLy4RrIJBSpfqUgeBe84967jlfO73aDSBmF-B6jjS1Jb-9Y3LsJgBTHKWnogVmNK9VVjKxRtIZstr0Hr6eHs3tjSLdMSwQ1QhSEhsZEuIfhVqRKysR69NENeOiy6JuG8_DrqjzsOQINwl1cYZKaqx1-G2dnFzfkkzgQWqrDQnZUyZiuCOEBE3IVcGczVfKUQtMop04mlM_3wjuesqxG2OCLiIAlPhoZShJwPubcBM77GnN4GEitsbWcfVEeYcWkhpmOQswaciEPOU4Dhf6Fhl7ONWBOM-TnmT3RiXKrZLVYKDYmQ_Zdz4YcxOvldxZnPDGKEdwtUQvVAJjsa78uv8-Lx5Yd9bfx24D_PNai2uXzWut2HBtS0QDqOuvwMzo8Gz3oU59TLqDgd72Rn8BISH33w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=q%E2%80%90frame+hash+comparison+based+exact+string+matching+algorithms+for+DNA+sequences&rft.jtitle=Concurrency+and+computation&rft.au=Abdullah+Ammar+Karcioglu&rft.au=Bulut%2C+Hasan&rft.date=2022-04-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=9&rft_id=info:doi/10.1002%2Fcpe.6505&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon