Efficient Surrogate-Based Optimization of Prefractionation Column Using Self-Adaptive Kriging Model with Modified Firefly Algorithm

The optimization of distillation columns is critically important due to their substantial contribution to operational costs in the petrochemical industry. This paper introduces a computationally efficient surrogate-based optimization framework designed explicitly for prefractionation columns. To add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 15; H. 22; S. 11962
Hauptverfasser: Huang, Yifan, Jin, Qibing, Wang, Bin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2025
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The optimization of distillation columns is critically important due to their substantial contribution to operational costs in the petrochemical industry. This paper introduces a computationally efficient surrogate-based optimization framework designed explicitly for prefractionation columns. To address the challenges of high computational cost and model accuracy in model-based optimization, a self-adaptive Kriging model, which features automated hyperparameter tuning via Bayesian optimization, is implemented and trained using Latin hypercube sampling of historical process data. By integrating a self-adaptive Kriging model with a modified firefly algorithm, the framework efficiently identifies optimal operating conditions that maximize economic profit while adhering to operational constraints. Case studies demonstrate that the proposed framework achieves superior economic performance, increasing the average final profit by 0.17–0.31% compared to non-adaptive surrogate benchmarks. Furthermore, it is exceptionally stable, achieving a minimal relative standard deviation of only 0.037% in the final profit across 30 independent runs, significantly lower than the 0.266% and 0.237% achieved by the benchmark methods. This study provides a practical and efficient tool to optimize complex distillation columns with limited computational resources.
AbstractList The optimization of distillation columns is critically important due to their substantial contribution to operational costs in the petrochemical industry. This paper introduces a computationally efficient surrogate-based optimization framework designed explicitly for prefractionation columns. To address the challenges of high computational cost and model accuracy in model-based optimization, a self-adaptive Kriging model, which features automated hyperparameter tuning via Bayesian optimization, is implemented and trained using Latin hypercube sampling of historical process data. By integrating a self-adaptive Kriging model with a modified firefly algorithm, the framework efficiently identifies optimal operating conditions that maximize economic profit while adhering to operational constraints. Case studies demonstrate that the proposed framework achieves superior economic performance, increasing the average final profit by 0.17–0.31% compared to non-adaptive surrogate benchmarks. Furthermore, it is exceptionally stable, achieving a minimal relative standard deviation of only 0.037% in the final profit across 30 independent runs, significantly lower than the 0.266% and 0.237% achieved by the benchmark methods. This study provides a practical and efficient tool to optimize complex distillation columns with limited computational resources.
Audience Academic
Author Huang, Yifan
Jin, Qibing
Wang, Bin
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0001-6584-6873
  surname: Huang
  fullname: Huang, Yifan
– sequence: 2
  givenname: Qibing
  surname: Jin
  fullname: Jin, Qibing
– sequence: 3
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
BookMark eNpNUU1P3DAQtRCVoAu3_gBLvTbUX4nj43YFLSqISpSz5djj1KskTp0sFb32j9chCOGR7PEbv-enmffoeIgDIPSBkgvOFflsxpGWjFGqKnaEThmRVcEFlcdv8hN0Pk17kpeivKbkFP279D7YAMOM7w8pxdbMUHwxEzh8N86hD3_NHOKAo8c_Evhk7HJdsV3sDv2AH6YwtPgeOl9sncmkR8DfU2gX9DY66PCfMP9a0uBD1r0KWah7wtuujSlX-jP0zptugvOXc4Meri5_7r4VN3dfr3fbm8IyUrOiKlUF1ja2Zk5YwZu6LAknjoFS0lKQQorGS9sIYm3tKgIMnJUgTVPnveIbdL3qumj2ekyhN-lJRxP0MxBTq02ag-1AE7d8wyQRjRKMqVpJRT2j0jBKDGFZ6-OqNab4-wDTrPfxkIZsX3Mmn43l2KCL9VVrsmgYfJxzB3M46IPN8_Mh49u6KkVJKiYy4dNKsClOU-7Tq01K9DJm_XbM_D_geZxE
Cites_doi 10.1016/j.cep.2020.108224
10.1016/j.compchemeng.2021.107537
10.1007/s13369-021-05608-5
10.1016/j.cherd.2018.03.006
10.1016/j.compchemeng.2022.107970
10.1016/B978-0-444-63578-5.50025-6
10.1109/TSMC.2020.3044418
10.1016/j.cnsns.2012.06.009
10.3390/jmse11010200
10.1002/cite.202000025
10.1021/acs.iecr.7b05173
10.1016/j.cherd.2021.07.004
10.1023/A:1008306431147
10.1016/j.cam.2020.113368
10.1002/aic.14798
10.1016/j.compchemeng.2022.107858
10.1016/j.swevo.2013.06.001
10.1109/CEC.2019.8790122
10.1109/TEVC.2013.2248012
10.3389/fcteg.2023.1162318
10.1016/j.cherd.2020.09.014
10.1007/s00500-021-06441-6
10.1021/acs.iecr.0c02868
10.1109/JPROC.2015.2494218
10.1016/j.oceaneng.2022.113463
10.1016/j.compchemeng.2023.108244
10.1109/ACCESS.2020.2988772
10.1137/18M1176488
10.1016/j.energy.2016.03.051
10.1016/j.psep.2023.02.023
10.3390/pr11082386
10.1016/B978-0-12-818597-1.50072-2
10.1016/j.advengsoft.2023.103571
10.7551/mitpress/3206.001.0001
10.1016/j.ijheatmasstransfer.2012.02.003
10.1016/j.arabjc.2022.104257
10.1080/00401706.1987.10488205
10.1007/s42452-018-0008-9
10.1007/s12205-017-1501-1
10.1016/j.compchemeng.2024.108591
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app152211962
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0dbc822704b9422989791f217a210a02
A865450624
10_3390_app152211962
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2082-6596eccbc82d4c43b855030d2e997c1e7474bf7cb40cc8d60e2edc7e7ab87e763
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Mon Dec 01 19:27:30 EST 2025
Wed Nov 26 14:51:50 EST 2025
Tue Dec 02 03:53:41 EST 2025
Thu Nov 20 00:48:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2082-6596eccbc82d4c43b855030d2e997c1e7474bf7cb40cc8d60e2edc7e7ab87e763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6584-6873
OpenAccessLink https://doaj.org/article/0dbc822704b9422989791f217a210a02
PQID 3275503030
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_0dbc822704b9422989791f217a210a02
proquest_journals_3275503030
gale_infotracacademiconefile_A865450624
crossref_primary_10_3390_app152211962
PublicationCentury 2000
PublicationDate 20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_36) 2022; 26
Liu (ref_21) 2021; 173
Jones (ref_28) 1998; 13
Shahriari (ref_29) 2016; 104
Ibrahim (ref_3) 2018; 134
Kunde (ref_4) 2019; 1
Burke (ref_32) 2020; 30
Minh (ref_19) 2018; 57
Quirante (ref_12) 2015; 61
Saves (ref_41) 2024; 188
Wang (ref_27) 2020; 8
ref_18
Yang (ref_42) 2013; 1
Pedregosa (ref_40) 2011; 12
Stein (ref_39) 1987; 29
Liu (ref_9) 2014; 18
Wu (ref_30) 2022; 15
Lee (ref_24) 2012; 55
Gandomi (ref_37) 2013; 18
Quirante (ref_20) 2015; 37
Jakobsen (ref_13) 2022; 163
Jian (ref_31) 2021; 390
Ferreira (ref_10) 2019; 47
ref_25
Tilahun (ref_35) 2017; 21
Mandis (ref_14) 2024; 183
Zhu (ref_22) 2021; 155
ref_1
Guo (ref_8) 2022; 52
ref_2
Qi (ref_23) 2023; 172
Zitouni (ref_34) 2021; 46
Zhu (ref_7) 2023; 268
McBride (ref_11) 2020; 92
Ma (ref_6) 2022; 167
ref_26
Ibrahim (ref_38) 2021; 165
Osuolale (ref_17) 2016; 106
Lu (ref_15) 2021; 159
Koksal (ref_16) 2023; 174
Franzoi (ref_5) 2020; 59
Fister (ref_33) 2013; 13
References_xml – volume: 159
  start-page: 108224
  year: 2021
  ident: ref_15
  article-title: Surrogate Modeling-Based Multi-Objective Optimization for the Integrated Distillation Processes
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2020.108224
– volume: 155
  start-page: 107537
  year: 2021
  ident: ref_22
  article-title: Developing New Products with Kernel Partial Least Squares Model Inversion
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107537
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_40
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 8741
  year: 2021
  ident: ref_34
  article-title: A Novel Quantum Firefly Algorithm for Global Optimization
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05608-5
– volume: 134
  start-page: 212
  year: 2018
  ident: ref_3
  article-title: Optimization-Based Design of Crude Oil Distillation Units Using Surrogate Column Models and a Support Vector Machine
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.03.006
– volume: 167
  start-page: 107970
  year: 2022
  ident: ref_6
  article-title: Data-Driven Strategies for Extractive Distillation Unit Optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107970
– volume: 37
  start-page: 179
  year: 2015
  ident: ref_20
  article-title: Optimization of Chemical Processes Using Surrogate Models Based on a Kriging Interpolation
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-63578-5.50025-6
– volume: 52
  start-page: 2084
  year: 2022
  ident: ref_8
  article-title: Evolutionary Optimization of High-Dimensional Multiobjective and Many-Objective Expensive Problems Assisted by a Dropout Neural Network
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3044418
– volume: 18
  start-page: 89
  year: 2013
  ident: ref_37
  article-title: Firefly Algorithm with Chaos
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 1
  start-page: 36
  year: 2013
  ident: ref_42
  article-title: Firefly Algorithm: Recent Advances and Applications
  publication-title: Int. J. Swarm Intell.
– ident: ref_25
  doi: 10.3390/jmse11010200
– volume: 92
  start-page: 842
  year: 2020
  ident: ref_11
  article-title: Hybrid Semi-parametric Modeling in Separation Processes: A Review
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.202000025
– volume: 57
  start-page: 5035
  year: 2018
  ident: ref_19
  article-title: Global Sensitivity Analysis and Uncertainty Quantification of Crude Distillation Unit Using Surrogate Model Based on Gaussian Process Regression
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b05173
– volume: 173
  start-page: 170
  year: 2021
  ident: ref_21
  article-title: Hybrid Modelling for Combined Design Optimization of CO2 Removal and Compression in Raw Natural Gas Treatment Complexes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.07.004
– volume: 13
  start-page: 455
  year: 1998
  ident: ref_28
  article-title: Efficient Global Optimization of Expensive Black-Box Functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 390
  start-page: 113368
  year: 2021
  ident: ref_31
  article-title: A QCQP-based Splitting SQP Algorithm for Two-Block Nonconvex Constrained Optimization Problems with Application
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113368
– volume: 61
  start-page: 2169
  year: 2015
  ident: ref_12
  article-title: Rigorous Design of Distillation Columns Using Surrogate Models Based on Kriging Interpolation
  publication-title: AIChE J.
  doi: 10.1002/aic.14798
– volume: 163
  start-page: 107858
  year: 2022
  ident: ref_13
  article-title: Neural Network Programming: Integrating First Principles into Machine Learning Models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107858
– volume: 13
  start-page: 34
  year: 2013
  ident: ref_33
  article-title: A Comprehensive Review of Firefly Algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– ident: ref_2
  doi: 10.1109/CEC.2019.8790122
– volume: 18
  start-page: 180
  year: 2014
  ident: ref_9
  article-title: A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2013.2248012
– ident: ref_26
  doi: 10.3389/fcteg.2023.1162318
– volume: 165
  start-page: 280
  year: 2021
  ident: ref_38
  article-title: Optimal Design of Flexible Heat-Integrated Crude Oil Distillation Units Using Surrogate Models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.09.014
– volume: 26
  start-page: 1845
  year: 2022
  ident: ref_36
  article-title: A Novel Hybrid Firefly–Whale Optimization Algorithm and Its Application to Optimization of MPC Parameters
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06441-6
– volume: 59
  start-page: 18616
  year: 2020
  ident: ref_5
  article-title: Cutpoint Temperature Surrogate Modeling for Distillation Yields and Properties
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02868
– volume: 104
  start-page: 148
  year: 2016
  ident: ref_29
  article-title: Taking the Human Out of the Loop: A Review of Bayesian Optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 268
  start-page: 113463
  year: 2023
  ident: ref_7
  article-title: An Efficient Surrogate Model-Based Method for Deep-Towed Seismic System Optimization
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2022.113463
– volume: 174
  start-page: 108244
  year: 2023
  ident: ref_16
  article-title: Physics Informed Piecewise Linear Neural Networks for Process Optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108244
– volume: 8
  start-page: 79104
  year: 2020
  ident: ref_27
  article-title: Data Driven State Monitoring of Maglev System With Experimental Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988772
– volume: 30
  start-page: 1822
  year: 2020
  ident: ref_32
  article-title: Inexact Sequential Quadratic Optimization with Penalty Parameter Updates within the QP Solver
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1176488
– volume: 106
  start-page: 562
  year: 2016
  ident: ref_17
  article-title: Energy Efficiency Optimisation for Distillation Column Using Artificial Neural Network Models
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.051
– volume: 172
  start-page: 379
  year: 2023
  ident: ref_23
  article-title: Novel Control-Aware Fault Detection Approach for Non-Stationary Processes via Deep Learning-Based Dynamic Surrogate Modeling
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.02.023
– ident: ref_1
  doi: 10.3390/pr11082386
– volume: 47
  start-page: 451
  year: 2019
  ident: ref_10
  article-title: A Genetic Programming Approach for Construction of Surrogate Models
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-12-818597-1.50072-2
– volume: 188
  start-page: 103571
  year: 2024
  ident: ref_41
  article-title: SMT 2.0: A Surrogate Modeling Toolbox with a Focus on Hierarchical and Mixed Variables Gaussian Processes
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103571
– ident: ref_18
  doi: 10.7551/mitpress/3206.001.0001
– volume: 55
  start-page: 2792
  year: 2012
  ident: ref_24
  article-title: Objective Function Proposed for Optimization of Convective Heat Transfer Devices
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.02.003
– volume: 15
  start-page: 104257
  year: 2022
  ident: ref_30
  article-title: Optimal Control Approach for Nonlinear Chemical Processes with Uncertainty and Application to a Continuous Stirred-Tank Reactor Problem
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2022.104257
– volume: 29
  start-page: 143
  year: 1987
  ident: ref_39
  article-title: Large Sample Properties of Simulations Using Latin Hypercube Sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 1
  start-page: 11
  year: 2019
  ident: ref_4
  article-title: Global Optimization of Distillation Columns Using Surrogate Models
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-018-0008-9
– volume: 21
  start-page: 535
  year: 2017
  ident: ref_35
  article-title: Firefly Algorithm for Discrete Optimization Problems: A Survey
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1501-1
– volume: 183
  start-page: 108591
  year: 2024
  ident: ref_14
  article-title: Exploring Nontraditional LSTM Architectures for Modeling Demethanizer Column Operations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108591
SSID ssj0000913810
Score 2.334783
Snippet The optimization of distillation columns is critically important due to their substantial contribution to operational costs in the petrochemical industry. This...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 11962
SubjectTerms Accuracy
Algorithms
Case studies
Datasets
distillation column
Energy consumption
Mathematical programming
modified firefly algorithm
Optimization algorithms
Petroleum chemicals
Process engineering
self-adaptive Kriging model
Simulation
surrogate-based optimization
Vacuum distillation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48AOwAZoZQP5AAIOEa6T2s4JtVMrJKRSMZB2s_xZJnVNl3aTOPOP7z3HHeMAFy5R5FiRk_f8ex-2f4-Q154rF0sRC-srV1RGDAprrCvEoC4dr0pbBpOKTcjpVJ2d1bOccFvnbZVbTExA7RuHOfIPJZfgTAPgso-rywKrRuHqai6hcZ_sIlMZ6PnuaDydfb3NsiDrpeqzbsd7CfE9rguDycLegv9hixJl_9-AOVmbyeP_HecT8ij7mXTYKcY-uReWB2TvDvvgAdnP83pN32Xy6fdPya9x4pQAU0RPr9q2wSxbMQJT5-kXQJeLfGyTNpHO4IPa7lxE13aCSLekaRcCPQ2LWAy9WSGe0s-p_tacYum1BcXkL96eR3CA6QRQNy5-0uFiDh-y-XHxjHyfjL-dfCpyoYbCcXAhULACVME6xUHiIGCVfoHnoa6l6wcIWSobpbMVc055wQIP3skgjVVwFeVzsrNsluGQUMMktzYq5cFTM31llHK4sstqWQs3kD3yZisyver4ODTEMShafVe0PTJCed72QRbt1NC0c50npWYeh8wlq2xdceSil3U_QpBmIBA2DF7yFrVB41zfwA81-cgCDBVZs_RQCXBAmeBVjxxvtUFnEFjr36rw4t-Pj8hDjmWF0xHHY7Kzaa_CS_LAXW_O1-2rrNM3lpAB2g
  priority: 102
  providerName: ProQuest
Title Efficient Surrogate-Based Optimization of Prefractionation Column Using Self-Adaptive Kriging Model with Modified Firefly Algorithm
URI https://www.proquest.com/docview/3275503030
https://doaj.org/article/0dbc822704b9422989791f217a210a02
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hwgEOiBYQoaXyAQQcVjj2xvYekyoRCBFWFKRyWvlZVUqTapNW6rl_nBnvtgqHiguX1b4O1nzjediebwDeBmF8kioVLpS-KK0aFc46X6hRJb0opZPR5mYTej43JydVvdXqi86EdfTAneA-8eA8OjHNS1eVgvjCdTVMGEhbTFZsRyPJdbWVTGUbXA2Juqo76S4xr6f9YHRVxGemxF8-KFP132eQs5eZPYOnfXjIxt2wduFBXO7Bky3SwD3Y7afjmn3oOaM_PoebaaaCQA_Cji_bdkWLY8UEPVRg39EonPfVlmyVWI3jabtyhu7dERmoJcuHB9hxXKRiHOwFmUH2NbfNOmXUMW3BaM2Wbs8Sxq1shsYyLa7ZeHG6avHL-Qv4NZv-PPpc9P0VCi_Q8xMeChEk-SJQiAuRm0keRKwq7YcRM43SJe1dyb03QfEoYvA6ausMXpV8CTvL1TK-Ama5Fs4lYwIGWHZorDGeNmQ5oqX8SA_g3a3Em4uORqPB9IOQabaRGcCE4Lj7h8iv8wtUiaZXieZfKjGA9wRmQ1N0gwK1faUBDpXIrpqxURg3ciXKARzc4t30c3fdSKGzHCR__T9Gsw-PBfUMzvWLB7CzaS_jG3jkrzZn6_YQHk6m8_rHYVZffKq_fKt__wGk7fQA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyAFpABArsgQo4WGzWjnd9QCgtjRqlDZFapPZkdtfrtFIaBycF9cz_4Tcys7ZLOcCtBy5RtI5Wo_HLvNmPeQPwKhPK5mGcByaLbBDpuBsYbWwQd5PQiig0odO-2YQcjdTxcTJegZ9NLQxdq2xiog_UWWFpj_xdKCQm0xhw-Yf514C6RtHpatNCo4LF0F1-xyXb4v3gI77fLSH6u0c7e0HdVSCwAvmOrIjRbmOVQPPQGuXnzYRLEmk7DvPryOTSmohbq7KYO-EyK53URuFnHOK8t2A1IrC3YHU8OBifXO3qkMqm6vDqhn0YJpzOoZEiSUctFn9wn28R8Dci8OzWv_-_-eUB3KvzaNargL8OK262AXevqStuwHodtxbsTS2u_fYh_Nj1mhlItezwoiwL2kUMtpHKM_YJo-d5XZbKipyN0YFlVfdRje1QJJ8xf8uCHbppHvQyPSe-YEPfX2zCqLXclNHmNn09yzHBZ31klXx6yXrTCTpueXr-CD7fiGseQ2tWzNwTYJpLYUyuVIaZqO4orZSlk2ueyCS2XdmGrQYi6bzSG0lxnUZQSq9DqQ3bhJ-r35BKuB8oyklaB52UZ2SykDwySSRIa18mnRwXoRoX-prjJK8JfSnFsiU6VNclGWgqqYKlPRVjgs1jEbVhs0FfWge5Rfobek___fgl3Nk7OthP9wej4TNYE9RC2ZdzbkJrWV6453DbflueLcoX9f-JwZebhuovlbdfzA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC0gAgX2QAUcrK7Xjnd9QCj9iIgCwVJBak9md70OldIkOCmoZ_4Vv46ZtV3KAW49cIksx3Im4-d5sx_zBuB5IZQto6QMTBHbINZJLzDa2CDppZEVcWQip32zCTkeq6OjNFuDn20tDG2rbGOiD9TF3NIc-U4kJCbTGHD5Ttlsi8j2B28WXwPqIEUrrW07jRoiI3f-HYdvy9fDfXzW20IMDj7uvQ2aDgOBFch9ZFGC_8FYJdBUtEz53yiES1NpQ4e5dmxKaU3MrVVFwp1whZVOaqPwM4nwvtdgnS4THVjPhu-z44sZHlLcVCGvd9tHUcppTRrpkjTVEvEHD_p2AX8jBc90gzv_s4_uwu0mv2b9-oXYgDU324Rbl1QXN2GjiWdL9rIR3X51D34ceC0NpGB2eFZVc5pdDHaR4gv2AaPqaVOuyuYly9CZVV0PUp_bowg_Y373BTt00zLoF3pBPMJGvu_YhFHLuSmjSW86PCkx8WcDZJtyes760wk6bvXl9D58uhLXPIDObD5zD4FpLoUxpVIFZqg6VFopSyvaPJVpYnuyC9stXPJFrUOS4_iNYJVfhlUXdglLF9eQerg_Ma8meROMcl6QyULy2KSxIA1-mYYlDk61CLnmeJMXhMScYtwKHaqbUg00ldTC8r5KMPHmiYi7sNUiMW-C3zL_DcNH__76GdxAfObvhuPRY7gpqLOyr_Lcgs6qOnNP4Lr9tjpZVk-bV4vB56tG6i_P_WiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Surrogate-Based+Optimization+of+Prefractionation+Column+Using+Self-Adaptive+Kriging+Model+with+Modified+Firefly+Algorithm&rft.jtitle=Applied+sciences&rft.au=Huang%2C+Yifan&rft.au=Jin%2C+Qibing&rft.au=Wang%2C+Bin&rft.date=2025-11-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=22&rft.spage=11962&rft_id=info:doi/10.3390%2Fapp152211962&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app152211962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon