Exponential convergence of a distributed divide-and-conquer algorithm for constrained convex optimization on networks
We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and c...
Uloženo v:
| Vydáno v: | Expositiones mathematicae Ročník 43; číslo 6; s. 125740 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier GmbH
01.12.2025
|
| Témata: | |
| ISSN: | 0723-0869 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and coordinates only with neighboring fusion centers. Under standard assumptions of smoothness, strong convexity, and locality on the objective function, together with polynomial growth conditions on the underlying graph, we establish exponential convergence of the DAC iterations and derive explicit bounds for both exact and inexact local solvers. Numerical experiments on three representative losses (L2 distance, quadratic, and entropy) confirm the theory and demonstrate scalability and effectiveness. |
|---|---|
| AbstractList | We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and coordinates only with neighboring fusion centers. Under standard assumptions of smoothness, strong convexity, and locality on the objective function, together with polynomial growth conditions on the underlying graph, we establish exponential convergence of the DAC iterations and derive explicit bounds for both exact and inexact local solvers. Numerical experiments on three representative losses (L2 distance, quadratic, and entropy) confirm the theory and demonstrate scalability and effectiveness. |
| ArticleNumber | 125740 |
| Author | Sun, Qiyu Song, Guohui Emirov, Nazar |
| Author_xml | – sequence: 1 givenname: Nazar surname: Emirov fullname: Emirov, Nazar email: nazaremirov@gmail.com organization: Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America – sequence: 2 givenname: Guohui surname: Song fullname: Song, Guohui email: gsong@odu.edu organization: Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States of America – sequence: 3 givenname: Qiyu orcidid: 0000-0002-0341-313X surname: Sun fullname: Sun, Qiyu email: qiyu.sun@ucf.edu organization: Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America |
| BookMark | eNp9kMtOwzAQRb0oEm3hD1j4BxLsOInTDRKqykOqxAbWlmOPW5fGLrZbCl9PQlgjjTSzuPdodGZo4rwDhG4oySmh9e0uh3Mn0zYvSFHltKh4SSZoSnjBMtLUi0s0i3FHCONV2UzRcXU-9ACXrNxj5d0JwgacAuwNlljbmIJtjwl0f5-shkw6nfW5jyMELPcbH2zadtj4MLT7tLSuD_-Sztgfku3st0zWO9yPg_Tpw3u8QhdG7iNc_-05entYvS6fsvXL4_Pyfp2pgjQ0Y2TBNdN1S9VCl8xIYjjQopGSklJppkxVM6BcG8pVw4g0suWaF6Zu2YJSxuaoHLkq-BgDGHEItpPhS1AiBl1iJ0ZdYtAlRl197W6sQf_byUIQUdnBirYBVBLa2_8BPwIKfRg |
| Cites_doi | 10.1016/j.acha.2017.07.007 10.1016/j.acha.2023.101623 10.1137/16M1084316 10.1109/LCSYS.2019.2923078 10.1090/S0002-9947-06-03841-4 10.1103/PhysRev.106.620 10.1016/j.automatica.2017.07.003 10.1016/j.arcontrol.2019.05.006 10.1090/S0025-5718-1984-0758197-9 10.1007/s10444-013-9314-3 10.1137/14096668X 10.1109/TAC.2019.2912494 10.1109/TAC.2014.2308612 10.1007/s00365-010-9121-8 10.1137/15M1049294 10.1090/S0002-9947-07-04303-6 10.1007/978-3-319-00825-7 10.1016/j.laa.2006.11.003 10.1109/TII.2012.2219061 10.1016/j.jfa.2018.09.014 10.1023/A:1007379606734 10.1109/TAC.2008.2009515 10.1561/2200000016 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier GmbH |
| Copyright_xml | – notice: 2025 Elsevier GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.exmath.2025.125740 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_exmath_2025_125740 S0723086925000957 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1816313; DMS-2318781 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9DU AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K TN5 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c2081-3097d3d6b1c9d43fa0f7e128aa104cd3cf563e17df17c830afab7d72f6b391133 |
| ISSN | 0723-0869 |
| IngestDate | Thu Nov 27 01:07:29 EST 2025 Wed Dec 10 14:31:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | secondary Constrained convex optimization on network Distributed and decentralized algorithm Divide and conquer algorithm primary |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2081-3097d3d6b1c9d43fa0f7e128aa104cd3cf563e17df17c830afab7d72f6b391133 |
| ORCID | 0000-0002-0341-313X |
| ParticipantIDs | crossref_primary_10_1016_j_exmath_2025_125740 elsevier_sciencedirect_doi_10_1016_j_exmath_2025_125740 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Expositiones mathematicae |
| PublicationYear | 2025 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Cheng, Jiang, Sun (b8) 2019; 47 Motee, Sun (b16) 2017; 55 Bertsekas, Tsitsiklis (b2) 2015 Boyd, Parikh, Chu, Peleato, Eckstein (b3) 2011; 3 Nedić, Olshevsky, Shi (b17) 2017; 27 Penrose (b21) 2003 Falsone, Margellos, Garatti, Prandini (b11) 2017; 84 Yang, Yang, Hu (b31) 2013 Nedich (b19) 2015 Agresti (b1) 2002 Yang, Johansson (b30) 2010; vol. 406 Nesterov, Nemirovskii (b20) 1994 Sun (b27) 2011; 34 Yang, Yi, Wu, Yuan, Wu, Meng, Hong, Wang, Lin, Johansson (b32) 2019; 47 Demko, Moss, Smith (b9) 1984; 43 Jaynes (b13) 1957; 106 Sheffi (b23) 1985 Chang, Nedić, Scaglione (b7) 2014; 59 Cao, Yu, Ren, Chen (b4) 2013; 9 Shin, Sun (b25) 2019; 276 Gröchenig, Leinert (b12) 2006; 358 Caruana (b6) 1997; 28 Shi, Ling, Wu, Yin (b24) 2015; 25 Emirov, Song, Sun (b10) 2024; 70 Nedic, Ozdaglar (b18) 2009; 54 Markowitz (b15) 1952; 7 Plesník (b22) 2007; 422 Sun (b28) 2014; 40 Sun (b26) 2007; 359 Wood, Wollenberg, Sheblé (b29) 2013 Carli, Dotoli (b5) 2020; 4 Liang, Wang, Yin (b14) 2020; 65 Zeidler (b33) 1990 Gröchenig (10.1016/j.exmath.2025.125740_b12) 2006; 358 Markowitz (10.1016/j.exmath.2025.125740_b15) 1952; 7 Wood (10.1016/j.exmath.2025.125740_b29) 2013 Yang (10.1016/j.exmath.2025.125740_b31) 2013 Nedić (10.1016/j.exmath.2025.125740_b17) 2017; 27 Penrose (10.1016/j.exmath.2025.125740_b21) 2003 Cheng (10.1016/j.exmath.2025.125740_b8) 2019; 47 Nesterov (10.1016/j.exmath.2025.125740_b20) 1994 Motee (10.1016/j.exmath.2025.125740_b16) 2017; 55 Plesník (10.1016/j.exmath.2025.125740_b22) 2007; 422 Agresti (10.1016/j.exmath.2025.125740_b1) 2002 Bertsekas (10.1016/j.exmath.2025.125740_b2) 2015 Yang (10.1016/j.exmath.2025.125740_b32) 2019; 47 Nedic (10.1016/j.exmath.2025.125740_b18) 2009; 54 Shi (10.1016/j.exmath.2025.125740_b24) 2015; 25 Chang (10.1016/j.exmath.2025.125740_b7) 2014; 59 Shin (10.1016/j.exmath.2025.125740_b25) 2019; 276 Liang (10.1016/j.exmath.2025.125740_b14) 2020; 65 Jaynes (10.1016/j.exmath.2025.125740_b13) 1957; 106 Emirov (10.1016/j.exmath.2025.125740_b10) 2024; 70 Nedich (10.1016/j.exmath.2025.125740_b19) 2015 Sun (10.1016/j.exmath.2025.125740_b28) 2014; 40 Demko (10.1016/j.exmath.2025.125740_b9) 1984; 43 Sun (10.1016/j.exmath.2025.125740_b27) 2011; 34 Caruana (10.1016/j.exmath.2025.125740_b6) 1997; 28 Sun (10.1016/j.exmath.2025.125740_b26) 2007; 359 Cao (10.1016/j.exmath.2025.125740_b4) 2013; 9 Carli (10.1016/j.exmath.2025.125740_b5) 2020; 4 Sheffi (10.1016/j.exmath.2025.125740_b23) 1985 Falsone (10.1016/j.exmath.2025.125740_b11) 2017; 84 Zeidler (10.1016/j.exmath.2025.125740_b33) 1990 Boyd (10.1016/j.exmath.2025.125740_b3) 2011; 3 Yang (10.1016/j.exmath.2025.125740_b30) 2010; vol. 406 |
| References_xml | – year: 2002 ident: b1 article-title: Categorical Data Analysis publication-title: Wiley Series in Probability and Statistics – volume: 27 start-page: 2597 year: 2017 end-page: 2633 ident: b17 article-title: Achieving geometric convergence for distributed optimization over time-varying graphs publication-title: SIAM J. Optim. – volume: 359 start-page: 3099 year: 2007 end-page: 3123 ident: b26 article-title: Wiener’s lemma for infinite matrices publication-title: Trans. Amer. Math. Soc. – volume: 106 start-page: 620 year: 1957 end-page: 630 ident: b13 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. – volume: 70 year: 2024 ident: b10 article-title: A divide-and-conquer algorithm for distributed optimization on networks publication-title: Appl. Comput. Harmon. Anal. – volume: 358 start-page: 2695 year: 2006 end-page: 2711 ident: b12 article-title: Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices publication-title: Trans. Amer. Math. Soc. – start-page: 1 year: 2015 end-page: 100 ident: b19 article-title: Convergence rate of distributed averaging dynamics and optimization in networks – volume: 47 start-page: 278 year: 2019 end-page: 305 ident: b32 article-title: A survey of distributed optimization publication-title: Annu. Rev. Control. – year: 1985 ident: b23 article-title: Urban Transportation Networks – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: b3 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. – volume: 4 start-page: 247 year: 2020 end-page: 252 ident: b5 article-title: Distributed alternating direction method of multipliers for linearly constrained optimization over a network publication-title: IEEE Control. Syst. Lett. – volume: 47 start-page: 109 year: 2019 end-page: 148 ident: b8 article-title: Spatially distributed sampling and reconstruction publication-title: Appl. Comput. Harmon. Anal. – volume: 43 start-page: 491 year: 1984 end-page: 499 ident: b9 article-title: Decay rates for inverses of band matrices publication-title: Math. Comp. – volume: 276 start-page: 148 year: 2019 end-page: 182 ident: b25 article-title: Polynomial control on stability, inversion and powers of matrices on simple graphs publication-title: J. Funct. Anal. – year: 2013 ident: b29 article-title: Power Generation, Operation, and Control – volume: 9 start-page: 427 year: 2013 end-page: 438 ident: b4 article-title: An overview of recent progress in the study of distributed multi-agent coordination publication-title: IEEE Trans. Ind. Informatics – volume: 54 start-page: 48 year: 2009 end-page: 61 ident: b18 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Autom. Control – year: 2015 ident: b2 article-title: Parallel and Distributed Computation: Numerical Methods – volume: 7 start-page: 77 year: 1952 end-page: 91 ident: b15 article-title: Portfolio selection publication-title: J. Financ. – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: b6 article-title: Multitask learning publication-title: Mach. Learn. – year: 1990 ident: b33 article-title: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators publication-title: Zeidler, E.: Nonlinear Functional Analysis – volume: 25 start-page: 944 year: 2015 end-page: 966 ident: b24 article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization publication-title: SIAM J. Optim. – volume: 65 start-page: 347 year: 2020 end-page: 353 ident: b14 article-title: Distributed smooth convex optimization with coupled constraints publication-title: IEEE Trans. Autom. Control – volume: 40 start-page: 415 year: 2014 end-page: 458 ident: b28 article-title: Localized nonlinear functional equations and two sampling problems in signal processing publication-title: Adv. Comput. Math. – volume: vol. 406 start-page: 109 year: 2010 end-page: 148 ident: b30 article-title: Distributed optimization and games: A tutorial overview publication-title: Networked Control Systems – year: 1994 ident: b20 article-title: Interior-Point Polynomial Algorithms in Convex Programming – year: 2003 ident: b21 article-title: Random Geometric Graphs – volume: 55 start-page: 200 year: 2017 end-page: 235 ident: b16 article-title: Sparsity and spatial localization measures for spatially distributed systems publication-title: SIAM J. Control Optim. – year: 2013 ident: b31 article-title: The Hardy space publication-title: Lecture Notes in Mathematics – volume: 34 start-page: 209 year: 2011 end-page: 235 ident: b27 article-title: Wiener’s lemma for infinite matrices II publication-title: Constr. Approx. – volume: 84 start-page: 149 year: 2017 end-page: 158 ident: b11 article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints publication-title: Automatica – volume: 422 start-page: 455 year: 2007 end-page: 470 ident: b22 article-title: Finding the orthogonal projection of a point onto an affine subspace publication-title: Linear Algebra Appl. – volume: 59 start-page: 1524 year: 2014 end-page: 1538 ident: b7 article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method publication-title: IEEE Trans. Autom. Control – year: 2003 ident: 10.1016/j.exmath.2025.125740_b21 – volume: 47 start-page: 109 issue: 1 year: 2019 ident: 10.1016/j.exmath.2025.125740_b8 article-title: Spatially distributed sampling and reconstruction publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2017.07.007 – volume: 70 year: 2024 ident: 10.1016/j.exmath.2025.125740_b10 article-title: A divide-and-conquer algorithm for distributed optimization on networks publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2023.101623 – volume: 27 start-page: 2597 issue: 4 year: 2017 ident: 10.1016/j.exmath.2025.125740_b17 article-title: Achieving geometric convergence for distributed optimization over time-varying graphs publication-title: SIAM J. Optim. doi: 10.1137/16M1084316 – volume: 4 start-page: 247 issue: 1 year: 2020 ident: 10.1016/j.exmath.2025.125740_b5 article-title: Distributed alternating direction method of multipliers for linearly constrained optimization over a network publication-title: IEEE Control. Syst. Lett. doi: 10.1109/LCSYS.2019.2923078 – start-page: 1 year: 2015 ident: 10.1016/j.exmath.2025.125740_b19 – volume: 358 start-page: 2695 issue: 6 year: 2006 ident: 10.1016/j.exmath.2025.125740_b12 article-title: Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-06-03841-4 – volume: 106 start-page: 620 issue: 4 year: 1957 ident: 10.1016/j.exmath.2025.125740_b13 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – volume: 84 start-page: 149 year: 2017 ident: 10.1016/j.exmath.2025.125740_b11 article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints publication-title: Automatica doi: 10.1016/j.automatica.2017.07.003 – volume: 47 start-page: 278 year: 2019 ident: 10.1016/j.exmath.2025.125740_b32 article-title: A survey of distributed optimization publication-title: Annu. Rev. Control. doi: 10.1016/j.arcontrol.2019.05.006 – year: 1990 ident: 10.1016/j.exmath.2025.125740_b33 article-title: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators – volume: 43 start-page: 491 issue: 168 year: 1984 ident: 10.1016/j.exmath.2025.125740_b9 article-title: Decay rates for inverses of band matrices publication-title: Math. Comp. doi: 10.1090/S0025-5718-1984-0758197-9 – volume: 40 start-page: 415 issue: 2 year: 2014 ident: 10.1016/j.exmath.2025.125740_b28 article-title: Localized nonlinear functional equations and two sampling problems in signal processing publication-title: Adv. Comput. Math. doi: 10.1007/s10444-013-9314-3 – volume: 25 start-page: 944 issue: 2 year: 2015 ident: 10.1016/j.exmath.2025.125740_b24 article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization publication-title: SIAM J. Optim. doi: 10.1137/14096668X – volume: 65 start-page: 347 issue: 1 year: 2020 ident: 10.1016/j.exmath.2025.125740_b14 article-title: Distributed smooth convex optimization with coupled constraints publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2912494 – volume: 59 start-page: 1524 issue: 6 year: 2014 ident: 10.1016/j.exmath.2025.125740_b7 article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2308612 – year: 2013 ident: 10.1016/j.exmath.2025.125740_b29 – volume: 34 start-page: 209 issue: 2 year: 2011 ident: 10.1016/j.exmath.2025.125740_b27 article-title: Wiener’s lemma for infinite matrices II publication-title: Constr. Approx. doi: 10.1007/s00365-010-9121-8 – volume: 55 start-page: 200 issue: 1 year: 2017 ident: 10.1016/j.exmath.2025.125740_b16 article-title: Sparsity and spatial localization measures for spatially distributed systems publication-title: SIAM J. Control Optim. doi: 10.1137/15M1049294 – volume: 359 start-page: 3099 issue: 7 year: 2007 ident: 10.1016/j.exmath.2025.125740_b26 article-title: Wiener’s lemma for infinite matrices publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-07-04303-6 – year: 2013 ident: 10.1016/j.exmath.2025.125740_b31 article-title: The Hardy space H1 with non-doubling measures and their applications doi: 10.1007/978-3-319-00825-7 – year: 2015 ident: 10.1016/j.exmath.2025.125740_b2 – volume: 422 start-page: 455 issue: 2 year: 2007 ident: 10.1016/j.exmath.2025.125740_b22 article-title: Finding the orthogonal projection of a point onto an affine subspace publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2006.11.003 – year: 2002 ident: 10.1016/j.exmath.2025.125740_b1 article-title: Categorical Data Analysis – year: 1985 ident: 10.1016/j.exmath.2025.125740_b23 – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 10.1016/j.exmath.2025.125740_b15 article-title: Portfolio selection publication-title: J. Financ. – year: 1994 ident: 10.1016/j.exmath.2025.125740_b20 – volume: 9 start-page: 427 issue: 1 year: 2013 ident: 10.1016/j.exmath.2025.125740_b4 article-title: An overview of recent progress in the study of distributed multi-agent coordination publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2012.2219061 – volume: 276 start-page: 148 issue: 1 year: 2019 ident: 10.1016/j.exmath.2025.125740_b25 article-title: Polynomial control on stability, inversion and powers of matrices on simple graphs publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2018.09.014 – volume: vol. 406 start-page: 109 year: 2010 ident: 10.1016/j.exmath.2025.125740_b30 article-title: Distributed optimization and games: A tutorial overview – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 10.1016/j.exmath.2025.125740_b6 article-title: Multitask learning publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – volume: 54 start-page: 48 issue: 1 year: 2009 ident: 10.1016/j.exmath.2025.125740_b18 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2009515 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.exmath.2025.125740_b3 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 |
| SSID | ssj0037548 |
| Score | 2.3506243 |
| Snippet | We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 125740 |
| SubjectTerms | Constrained convex optimization on network Distributed and decentralized algorithm Divide and conquer algorithm |
| Title | Exponential convergence of a distributed divide-and-conquer algorithm for constrained convex optimization on networks |
| URI | https://dx.doi.org/10.1016/j.exmath.2025.125740 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0723-0869 databaseCode: AIEXJ dateStart: 20211211 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0037548 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZuoftYeyTdl_oYW9BJbbiyH4sJd0HW9lYB3kzsj5Wl8YOThy8vff_7smyHHUZZX0YGBOMcol1P-5O0u_uEHoXJ5rClRFj-siEM0U4uBWiVRypQDEurKY_s9PTeD5Pvg4GVy4XZnPJiiJummT5X1UNz0DZJnX2DuruhcID-AxKhzuoHe7_pPhZsywLwwFqK38UG5teqWwipDR1ck2LK4gz20wsmLRCEhgH_qEa8cufZZWvzxct-1CY2NG0kFDSSmpGJViYRZe6ac4ZCssiX93Y4G8cE0ytRou-LCzvITRb5FW5sbb9N-_Zwd87dvD7ujyv8-1pVWsXv-W_an-HIow8toc1ZCykBJZOiW91bXGmDl2-CYWIi9kKTjvW3W40XBya3eG1OUkKo8Pt8JvFtP9wcj310LHaLlIrJTVSUivlHtoLWZTEQ7R39HE2_-RcumkT3Lp09yIuB7MlCu7-m7_HOF7ccvYYPeoWHPjIAuUJGqjiKXr4pVfL6hmqPchgDzK41JhjDzJ4FzK4hwwGyGAPMlZSg33IYLgcZJ6jHyezs-MPpGvHQUQIgSOh44RJKqdZIBI5oZqPNVMQ3nAOS3ohqdDRlKqASR0wEdMx1zxjkoV6mlFwqZS-QMMC3mYfYSYjHUWCRmMRTEwPAD3RAgZnCgJ6xeQBIm4C06WtupLeprgDxNwsp13kaCPCFKBz6zdf3vGXXqEHW4i_RsN1Vas36L7YrPNV9bbDzTWA15l1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+convergence+of+a+distributed+divide-and-conquer+algorithm+for+constrained+convex+optimization+on+networks&rft.jtitle=Expositiones+mathematicae&rft.au=Emirov%2C+Nazar&rft.au=Song%2C+Guohui&rft.au=Sun%2C+Qiyu&rft.date=2025-12-01&rft.issn=0723-0869&rft.volume=43&rft.issue=6&rft.spage=125740&rft_id=info:doi/10.1016%2Fj.exmath.2025.125740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_exmath_2025_125740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-0869&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-0869&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-0869&client=summon |