Lightweight CNN Architecture Design Based on Spatial-Temporal Tensor and Its Application in Bearing Fault Diagnosis

Bearing is a failure-prone component in rotating machinery equipment, and various task conditions make bearing fault diagnosis (BFD) a challenging task. Despite the great success of convolutional neural network (CNN) in feature extraction, most of them are based on manual tuning, and it is not easy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 12
Hauptverfasser: Wang, Zan, Lu, Hui, Shi, Yuhui, Wang, Xianpeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bearing is a failure-prone component in rotating machinery equipment, and various task conditions make bearing fault diagnosis (BFD) a challenging task. Despite the great success of convolutional neural network (CNN) in feature extraction, most of them are based on manual tuning, and it is not easy to determine a unified CNN architecture with an effective balance between accuracy and computational resources [parameters and floating point operations (FLOPs)]. In this article, an automatic CNN architecture design method called AUTO-CNN is proposed to address the above issues. First, a novel representation learning method (RLM) based on spatial-temporal tensors (STTs) is proposed, in which AUTO-CNN can use 2-D multiscale convolutions to capture more feature hierarchy, i.e., temporal variabilities and spatial characteristics. Second, unlike most of the current nontask-specific studies that establish deeper and more complex networks for better performance, this article investigates lightweight CNNs with limited resources under task-specific applications. Finally, to speed up the design process, an efficient hierarchical encoding strategy and space exploration strategy are proposed to avoid inefficient architecture generation and reduce CNNs training time. Experiments on four real-world BFD tasks demonstrate that the proposed method outperforms the peer competitors, including machine learning, deep learning, and other CNN-based methods.
AbstractList Bearing is a failure-prone component in rotating machinery equipment, and various task conditions make bearing fault diagnosis (BFD) a challenging task. Despite the great success of convolutional neural network (CNN) in feature extraction, most of them are based on manual tuning, and it is not easy to determine a unified CNN architecture with an effective balance between accuracy and computational resources [parameters and floating point operations (FLOPs)]. In this article, an automatic CNN architecture design method called AUTO-CNN is proposed to address the above issues. First, a novel representation learning method (RLM) based on spatial-temporal tensors (STTs) is proposed, in which AUTO-CNN can use 2-D multiscale convolutions to capture more feature hierarchy, i.e., temporal variabilities and spatial characteristics. Second, unlike most of the current nontask-specific studies that establish deeper and more complex networks for better performance, this article investigates lightweight CNNs with limited resources under task-specific applications. Finally, to speed up the design process, an efficient hierarchical encoding strategy and space exploration strategy are proposed to avoid inefficient architecture generation and reduce CNNs training time. Experiments on four real-world BFD tasks demonstrate that the proposed method outperforms the peer competitors, including machine learning, deep learning, and other CNN-based methods.
Author Wang, Zan
Shi, Yuhui
Wang, Xianpeng
Lu, Hui
Author_xml – sequence: 1
  givenname: Zan
  orcidid: 0000-0002-9809-5655
  surname: Wang
  fullname: Wang, Zan
  email: by2002141@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Hui
  orcidid: 0000-0001-9455-4597
  surname: Lu
  fullname: Lu, Hui
  email: mluhui@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Yuhui
  orcidid: 0000-0002-8840-723X
  surname: Shi
  fullname: Shi, Yuhui
  email: shiyh@sustech.edu.cn
  organization: Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, School of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Xianpeng
  orcidid: 0000-0001-8132-9446
  surname: Wang
  fullname: Wang, Xianpeng
  email: wangxianpeng@ise.neu.edu.cn
  organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization and the Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, China
BookMark eNp9kDtPwzAURi0EEuWxMzBYYk7xK3Y8lvKqVMpAmSPXuWldpU6wXSH-PSntgBhY7l2-cz_dc4aOfesBoStKhpQSfTufvAwZYXzIOZeC50doQPNcZVpKdowGhNAi0yKXp-gsxjUhREmhBihO3XKVPmE38Xg2w6NgVy6BTdsA-B6iW3p8ZyJUuPX4rTPJmSabw6Zrg2nwHHxsAza-wpMU8ajrGmf7TJ91PQcmOL_Ej2bbJHzvzNK30cULdFKbJsLlYZ-j98eH-fg5m74-TcajaWYZUSkzBoSylWBgdb2oOSNVoU2h85wVTAOpZCUJUK5ZJWtjba0XpgKltBCcF8D4ObrZ3-1C-7GFmMp1uw2-ryyZJkIqwTjtU2SfsqGNMUBddsFtTPgqKSl3astebblTWx7U9oj8g1iXfr5OwbjmP_B6DzoA-NXDOVE059_XIojs
CODEN IEIMAO
CitedBy_id crossref_primary_10_1007_s11227_025_07493_3
crossref_primary_10_1109_JSEN_2025_3591231
crossref_primary_10_1109_TIM_2025_3575982
crossref_primary_10_1088_1361_6501_adcadc
crossref_primary_10_1088_1361_6501_adcce6
crossref_primary_10_1109_TIM_2025_3544322
crossref_primary_10_1109_TITS_2024_3474704
crossref_primary_10_1109_TIM_2025_3551952
crossref_primary_10_1109_TIM_2024_3440384
crossref_primary_10_1109_TIM_2025_3551427
Cites_doi 10.1016/j.ress.2023.109319
10.1016/j.psep.2021.03.016
10.1016/j.jsv.2014.02.038
10.1109/ACCESS.2021.3065195
10.1016/j.ymssp.2023.110427
10.1109/TIM.2022.3168929
10.1109/TNNLS.2021.3059784
10.1088/1361-6501/ac3b0b
10.3390/s22176570
10.1007/s00170-021-08126-8
10.1109/CVPR.2017.243
10.1021/ie300072q
10.1214/aoms/1177704472
10.1016/j.isatra.2020.08.010
10.1109/TIM.2021.3071232
10.1109/TIM.2022.3212542
10.1109/tevc.2023.3290172
10.1016/j.neucom.2022.04.111
10.1109/TIM.2019.2933119
10.3390/app112210889
10.4236/jcc.2014.29004
10.1155/2019/4031795
10.1109/TIE.2017.2752151
10.1109/TIM.2021.3072131
10.1109/ACCESS.2021.3097353
10.1016/j.jmsy.2023.07.012
10.1109/TIM.2021.3080402
10.1109/ICDM.2008.17
10.1016/j.jmsy.2021.03.022
10.1109/TIE.2017.2774777
10.1155/2021/1221462
10.1007/s11265-019-01463-8
10.1109/CVPR.2016.90
10.1109/TII.2012.2214394
10.1021/acs.iecr.9b03399
10.1109/TIM.2022.3188058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3336435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2023_3336435
10330715
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371030; 61827901; 62073067
  funderid: 10.13039/501100001809
– fundername: Beijing Municipal Natural Science Foundation
  grantid: 4222008
  funderid: 10.13039/501100004826
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c207t-aae47cd42ec9fbf320d89a89552829e0d6d60e1392d6faccf9bade77944338e23
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:08:24 EDT 2025
Sat Nov 29 08:06:41 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 01:42:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c207t-aae47cd42ec9fbf320d89a89552829e0d6d60e1392d6faccf9bade77944338e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8840-723X
0000-0001-9455-4597
0000-0001-8132-9446
0000-0002-9809-5655
PQID 2904674231
PQPubID 85462
PageCount 12
ParticipantIDs proquest_journals_2904674231
ieee_primary_10330715
crossref_primary_10_1109_TIM_2023_3336435
crossref_citationtrail_10_1109_TIM_2023_3336435
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref1
ref39
ref38
ref19
ref18
Howard (ref16) 2017
ref24
ref23
ref26
Lessmeier (ref2)
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Tan (ref17)
ref9
ref4
ref3
ref6
ref5
Schölkopf (ref33); 12
ref40
(ref32) 2012
References_xml – ident: ref18
  doi: 10.1016/j.ress.2023.109319
– ident: ref3
  doi: 10.1016/j.psep.2021.03.016
– ident: ref11
  doi: 10.1016/j.jsv.2014.02.038
– ident: ref40
  doi: 10.1109/ACCESS.2021.3065195
– ident: ref13
  doi: 10.1016/j.ymssp.2023.110427
– ident: ref25
  doi: 10.1109/TIM.2022.3168929
– ident: ref31
  doi: 10.1109/TNNLS.2021.3059784
– ident: ref39
  doi: 10.1088/1361-6501/ac3b0b
– ident: ref41
  doi: 10.3390/s22176570
– ident: ref19
  doi: 10.1007/s00170-021-08126-8
– ident: ref15
  doi: 10.1109/CVPR.2017.243
– ident: ref8
  doi: 10.1021/ie300072q
– year: 2017
  ident: ref16
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref6
  doi: 10.1214/aoms/1177704472
– ident: ref5
  doi: 10.1016/j.isatra.2020.08.010
– volume: 12
  start-page: 582
  issue: 3
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Support vector method for novelty detection
– ident: ref21
  doi: 10.1109/TIM.2021.3071232
– ident: ref37
  doi: 10.1109/TIM.2022.3212542
– ident: ref36
  doi: 10.1109/tevc.2023.3290172
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref24
  doi: 10.1016/j.neucom.2022.04.111
– ident: ref1
  doi: 10.1109/TIM.2019.2933119
– ident: ref38
  doi: 10.3390/app112210889
– ident: ref12
  doi: 10.4236/jcc.2014.29004
– ident: ref7
  doi: 10.1155/2019/4031795
– ident: ref28
  doi: 10.1109/TIE.2017.2752151
– ident: ref27
  doi: 10.1109/TIM.2021.3072131
– ident: ref29
  doi: 10.1109/ACCESS.2021.3097353
– start-page: 5
  volume-title: Proc. Eur. Conf. Prognostics Health Manag. Soc.
  ident: ref2
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification
– ident: ref4
  doi: 10.1016/j.jmsy.2023.07.012
– ident: ref22
  doi: 10.1109/TIM.2021.3080402
– ident: ref10
  doi: 10.1109/ICDM.2008.17
– ident: ref23
  doi: 10.1016/j.jmsy.2021.03.022
– ident: ref34
  doi: 10.1109/TIE.2017.2774777
– ident: ref26
  doi: 10.1155/2021/1221462
– ident: ref20
  doi: 10.1007/s11265-019-01463-8
– ident: ref14
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1109/TII.2012.2214394
– volume-title: Society for Machinery Failure Prevention Technology
  year: 2012
  ident: ref32
– ident: ref30
  doi: 10.1021/acs.iecr.9b03399
– ident: ref35
  doi: 10.1109/TIM.2022.3188058
SSID ssj0007647
Score 2.5100899
Snippet Bearing is a failure-prone component in rotating machinery equipment, and various task conditions make bearing fault diagnosis (BFD) a challenging task....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Automatic architecture design
bearing fault diagnosis (BFD)
convolutional neural network (CNN)
Convolutional neural networks
Deep learning
Fault diagnosis
Feature extraction
Floating point arithmetic
genetic algorithm
Genetic algorithms
Lightweight
Machine learning
Mathematical analysis
Rotating machinery
Space exploration
Tensors
Vibrations
Title Lightweight CNN Architecture Design Based on Spatial-Temporal Tensor and Its Application in Bearing Fault Diagnosis
URI https://ieeexplore.ieee.org/document/10330715
https://www.proquest.com/docview/2904674231
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8qCnrwc-J0Sg5ePHTL2rRZjvNjKGjxMMVbSZNXGIxW1k7_fV_STiei4K2HvLT0l_eV90XIuZZKsBC4x0UqPG6E8lLbGdEwxXSm-kHmIrrP9yKOBy8v8rEpVne1MADgks-gax9dLN8Uem6vypDD0fsWtqR8VYioLtb6FLsi4nWDzD5yMJoFi5gkk73x3UPXjgnvBkGAGjj8poPcUJUfktipl9HOPz9sl2w3diQd1sDvkRXI98nWUnfBfbLhsjt1eUDKe-uCv7tbUHoVx3S4FD6g1y6Jg16iPjO0yKmdUoyn0hvXXaumdIyubjGjKjf0rirp8CvmTSdIh7yC76MjNZ9W9LpO3ZuULfI0uhlf3XrNtAVP-0xUnlLAhTbcBy2zNAt8ZgZSDWQY2mArMBOZiAEajL6JMqV1JlNlQCA_c3RzwQ8OyVpe5HBEKKAYFCyVnIHhka_QJAkhQ4IgMqHgUZv0Fv8_0U0rcjsRY5o4l4TJBBFLLGJJg1ibXHxSvNZtOP5Y27IILa2rwWmTzgLjpGHUMvEls_NW0Mo9_oXshGzi7ry-dumQtWo2h1Oyrt-qSTk7c2fwA_kr2Oc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9CAwQcBoyhdQzmwy47pHMTJ66PZaNqtTbiEKbdIsd-kSpV6dSk49_n2Um3TmhI3HLwk638_L78vgDOjNKSxygCIQsZCCt1ULjOiJZrbko9iEof0b2ZyTQd3t6qn12xuq-FQUSffIZ99-lj-XZlNu6pjDicvG_pSspfxkKEvC3XehC8MhFti8wB8TAZBtuoJFcX2XTed4PC-1EUkQ6On2ghP1blL1nsFcz4_X8e7QPsd5YkG7XQf4QXWB3Au53-ggfw2ud3mvoT1DPnhP_276DsMk3ZaCeAwK58Ggf7ThrNslXF3JxiupdB1vatWrKMnN3VmunKsmlTs9Fj1JstiI64hfZjY71ZNuyqTd5b1Ifwa_wju5wE3byFwIRcNoHWKKSxIkSjyqKMQm6HSg9VHLtwK3Kb2IQjmYyhTUptTKkKbVESRwtydDGMPsNetarwCBiSIJS8UIKjFUmoySiJsSSCKLGxFEkPLrb_PzddM3I3E2OZe6eEq5wQyx1ieYdYD84fKO7aRhz_WHvoENpZ14LTg5MtxnnHqnUeKu4mrpCde_wM2Sm8mWTzWT6bptdf4C3tJNpHmBPYa9Yb_AqvzH2zqNff_H38A2mV3C4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+CNN+Architecture+Design+Based+on+Spatial%E2%80%93Temporal+Tensor+and+Its+Application+in+Bearing+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Zan&rft.au=Lu%2C+Hui&rft.au=Shi%2C+Yuhui&rft.au=Wang%2C+Xianpeng&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2023.3336435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3336435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon