LEMMA: Learning Language-Conditioned Multi-Robot Manipulation
Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for L anguag E -Conditioned M ulti-robot MA nipulation ( LEMMA ) focused on task allocation and long-horizon object manipulation based on human language instructions in a tabletop...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 8; no. 10; pp. 6835 - 6842 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for L anguag E -Conditioned M ulti-robot MA nipulation ( LEMMA ) focused on task allocation and long-horizon object manipulation based on human language instructions in a tabletop setting. LEMMA features 8 types of procedurally generated tasks with varying degree of complexity, some of which require the robots to use tools and pass tools to each other. For each task, we provide 800 expert demonstrations and human instructions for training and evaluations. LEMMA poses greater challenges compared to existing benchmarks, as it requires the system to identify each manipulator's limitations and assign sub-tasks accordingly while also handling strong temporal dependencies in each task. To address these challenges, we propose a modular hierarchical planning approach as a baseline. Our results highlight the potential of LEMMA for developing future language-conditioned multi-robot systems. |
|---|---|
| AbstractList | Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for L anguag E -Conditioned M ulti-robot MA nipulation ( LEMMA ) focused on task allocation and long-horizon object manipulation based on human language instructions in a tabletop setting. LEMMA features 8 types of procedurally generated tasks with varying degree of complexity, some of which require the robots to use tools and pass tools to each other. For each task, we provide 800 expert demonstrations and human instructions for training and evaluations. LEMMA poses greater challenges compared to existing benchmarks, as it requires the system to identify each manipulator's limitations and assign sub-tasks accordingly while also handling strong temporal dependencies in each task. To address these challenges, we propose a modular hierarchical planning approach as a baseline. Our results highlight the potential of LEMMA for developing future language-conditioned multi-robot systems. |
| Author | Thattai, Govind Gao, Qiaozi Gong, Ran Gao, Xiaofeng Sukhatme, Gaurav S. Shakiah, Suhaila |
| Author_xml | – sequence: 1 givenname: Ran orcidid: 0009-0000-9365-9143 surname: Gong fullname: Gong, Ran email: nikepupu@ucla.edu organization: Center for Vision, Cognition, Learning, and Autonomy, UCLA, Los Angeles, CA, USA – sequence: 2 givenname: Xiaofeng orcidid: 0000-0003-3331-9846 surname: Gao fullname: Gao, Xiaofeng email: xfgao@g.ucla.edu organization: Amazon Alexa AI, San Jose, CA, USA – sequence: 3 givenname: Qiaozi orcidid: 0000-0002-5403-0796 surname: Gao fullname: Gao, Qiaozi email: qiaozikl@gmail.com organization: Amazon Alexa AI, San Jose, CA, USA – sequence: 4 givenname: Suhaila orcidid: 0000-0002-1891-7058 surname: Shakiah fullname: Shakiah, Suhaila email: ssshakia@amazon.com organization: Amazon Alexa AI, San Jose, CA, USA – sequence: 5 givenname: Govind orcidid: 0009-0005-1010-8896 surname: Thattai fullname: Thattai, Govind email: gowin.thattai@gmail.com organization: Amazon Alexa AI, San Jose, CA, USA – sequence: 6 givenname: Gaurav S. orcidid: 0000-0003-2408-474X surname: Sukhatme fullname: Sukhatme, Gaurav S. email: gaurav@usc.edu organization: Amazon Alexa AI, San Jose, CA, USA |
| BookMark | eNp9kD1rwzAQhkVJoWmavUMHQ2enkk5fLnQIIf0Am0JoZ6FYclBw5VS2h_77OE2G0KHTHdw993LPNRqFJjiEbgmeEYKzh3w1n1FMYQZAAHN1gcYUpExBCjE666_QtG23GGPCqYSMj9FTviyK-WOSOxODD5skN2HTm41LF02wvvNDkE2Kvu58umrWTZcUJvhdX5vD6AZdVqZu3fRUJ-jzefmxeE3z95e3xTxPS4pll8qMWbF2jFNrJGM8U1QAlZIzIJWS1ihGGTWVLbPKECstN8IS7jB1meWwhgm6P97dxea7d22nt00fwxCpqRIcZ0SAGrbwcauMTdtGV-ld9F8m_miC9cGTHjzpgyd98jQg4g9S-u73tS4aX_8H3h1B75w7y6EMsALYA0zidLM |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_3390_app14114696 crossref_primary_10_1016_j_rcim_2025_103113 crossref_primary_10_1109_JAS_2025_125552 |
| Cites_doi | 10.1007/978-3-030-95459-8_13 10.1007/978-3-030-58601-0_39 10.1177/02783649211056967 10.1109/LRA.2022.3180108 10.1177/0278364913496484 10.1162/isal_a_00269 10.15607/RSS.2022.XVIII.032 10.15607/RSS.2021.XVII.044 10.1109/LRA.2022.3145964 10.1109/IROS47612.2022.9981802 10.1109/CVPR.2018.00387 10.1109/ICCV48922.2021.01564 10.1109/TASE.2018.2791478 10.1016/j.robot.2012.07.005 10.15607/RSS.2021.XVII.047 10.1007/978-3-030-58558-7_28 10.1109/HUMANOIDS47582.2021.9555672 10.1109/IROS47612.2022.9981280 10.15607/RSS.2020.XVI.003 10.1109/CVPR.2019.00685 10.1109/CVPR42600.2020.01075 10.1109/ICRA48891.2023.10161317 10.1109/LRA.2022.3193254 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2023.3313058 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 6842 |
| ExternalDocumentID | 10_1109_LRA_2023_3313058 10243083 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Amazon Alexa AI |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c207t-794d6be452da7445982632775431f87da84242afdc9fa1d7d5a6d15e02e9d53b3 |
| IEDL.DBID | RIE |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 06:24:41 EDT 2025 Tue Nov 18 21:00:09 EST 2025 Sat Nov 29 06:03:27 EST 2025 Wed Aug 27 02:24:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c207t-794d6be452da7445982632775431f87da84242afdc9fa1d7d5a6d15e02e9d53b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-1010-8896 0000-0003-3331-9846 0000-0003-2408-474X 0000-0002-5403-0796 0009-0000-9365-9143 0000-0002-1891-7058 |
| PQID | 2865091638 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2023_3313058 ieee_primary_10243083 proquest_journals_2865091638 crossref_citationtrail_10_1109_LRA_2023_3313058 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 stepputtis (ref11) 0 ref34 ref15 ref14 ref36 ref31 ref30 ref33 szot (ref20) 0 ref32 shridhar (ref5) 0 ref2 ref16 ref19 huang (ref8) 0 ref18 nair (ref12) 0 shridhar (ref1) 0 ref26 ref25 min (ref35) 0 chen (ref24) 0 ref21 zheng (ref3) 0 ref28 ref27 zeng (ref22) 0 ref29 sharma (ref23) 2022 ref7 ref9 ref4 ref6 wang (ref17) 2021 zeng (ref10) 0 |
| References_xml | – ident: ref28 doi: 10.1007/978-3-030-95459-8_13 – start-page: 1769 year: 0 ident: ref8 article-title: Inner monologue: Embodied reasoning through planning with language models publication-title: Proc Conf Robot Learn – start-page: 894 year: 0 ident: ref1 article-title: CLIPort: What and where pathways for robotic manipulation publication-title: Proc 5th Conf Robot Learn – ident: ref13 doi: 10.1007/978-3-030-58601-0_39 – ident: ref32 doi: 10.1177/02783649211056967 – ident: ref2 doi: 10.1109/LRA.2022.3180108 – ident: ref34 doi: 10.1177/0278364913496484 – ident: ref18 doi: 10.1162/isal_a_00269 – ident: ref14 doi: 10.15607/RSS.2022.XVIII.032 – start-page: 726 year: 0 ident: ref22 article-title: Transporter networks: Rearranging the visual world for robotic manipulation publication-title: Proc Conf Robot Learn – ident: ref21 doi: 10.15607/RSS.2021.XVII.044 – ident: ref19 doi: 10.1109/LRA.2022.3145964 – year: 2022 ident: ref23 article-title: CH-MARL: A multimodal benchmark for cooperative, heterogeneous multi-agent reinforcement learning – ident: ref29 doi: 10.1109/IROS47612.2022.9981802 – year: 2021 ident: ref17 article-title: Collaborative visual navigation – start-page: 1 year: 0 ident: ref10 article-title: Socratic models: Composing zero-shot multimodal reasoning with language publication-title: Proc 11th Int Conf Learn Representations – start-page: 5150 year: 0 ident: ref24 article-title: Towards human-level bimanual dexterous manipulation with reinforcement learning publication-title: Proc Adv Neural Inf Process Syst – start-page: 785 year: 0 ident: ref5 article-title: Perceiver-actor: A multi-task transformer for robotic manipulation publication-title: Proc Conf Robot Learn – ident: ref4 doi: 10.1109/CVPR.2018.00387 – start-page: 1 year: 0 ident: ref35 article-title: FILM: Following instructions in language with modular methods publication-title: Proc Int Conf Learn Representations – ident: ref36 doi: 10.1109/ICCV48922.2021.01564 – ident: ref30 doi: 10.1109/TASE.2018.2791478 – ident: ref27 doi: 10.1016/j.robot.2012.07.005 – ident: ref9 doi: 10.15607/RSS.2021.XVII.047 – ident: ref15 doi: 10.1007/978-3-030-58558-7_28 – ident: ref26 doi: 10.1109/HUMANOIDS47582.2021.9555672 – start-page: 13139 year: 0 ident: ref11 article-title: Language-conditioned imitation learning for robot manipulation tasks publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1109/IROS47612.2022.9981280 – ident: ref31 doi: 10.15607/RSS.2020.XVI.003 – ident: ref16 doi: 10.1109/CVPR.2019.00685 – start-page: 665 year: 0 ident: ref3 article-title: VLMBENCH: A compositional benchmark for vision-and-language manipulation publication-title: Proc Neural Inf Process Syst Track Datasets Benchmarks – start-page: 1303 year: 0 ident: ref12 article-title: Learning language-conditioned robot behavior from offline data and crowd-sourced annotation publication-title: Proc Conf Robot Learn – start-page: 251 year: 0 ident: ref20 article-title: Habitat 2.0: Training home assistants to rearrange their habitat publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1109/CVPR42600.2020.01075 – ident: ref33 doi: 10.1109/ICRA48891.2023.10161317 – ident: ref7 doi: 10.1109/LRA.2022.3193254 |
| SSID | ssj0001527395 |
| Score | 2.298679 |
| Snippet | Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for L anguag E -Conditioned M... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6835 |
| SubjectTerms | Benchmark testing Benchmarks Collaboration Data Sets for Robot Learning Multi-robot systems Multiple robots Multitasking Natural Dialog for HRI Planning Robot kinematics Robots Task analysis Task complexity |
| Title | LEMMA: Learning Language-Conditioned Multi-Robot Manipulation |
| URI | https://ieeexplore.ieee.org/document/10243083 https://www.proquest.com/docview/2865091638 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44UEPfk6cztGDFw_d2iZtGsHDGBse2iFDYbeSr4ogq2ydR_92k7TVgSh46yFpy0veR97L-_0ArlkQCSIQcmPTIYM591xKQ-7qyDQkNJYyYhYyPyGzWbxY0Ie6Wd32wiil7OUzNTCPtpYvC7ExqTKt4QFGOmZoQYsQUjVrfSdUDJQYDZtSpEeHyXw0MOzgA4S0pTak7luux3Kp_DDA1qtMD__5P0dwUIePzqha72PYUcsT2N8CFTyFu2SSpqNbp0ZOfXaSOiXpjgtTnzbQRNKxjbfuvOBF6aRs-dLQeHXgaTp5HN-7NUmCKwKPlK7WJxlxhcNAMoKxweOLUGBw7ZCfx0SyGGsvzHIpaM58SWTIIumHygsUlSHi6AzaS_3hc3CkKclQFssY6yhKBBTn2CecC5ZzfTDKuzBs5JeJGkHcEFm8ZvYk4dFMSzwzEs9qiXfh5mvGW4We8cfYjpHw1rhKuF3oNWuU1fq1zkw_rY50tPG4-GXaJeyZt1f37nrQLlcbdQW74r18Wa_60Eo_Jn27gT4BXlXAzA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxOnU3vw4qGzbdKPCB7G2JjYDhkTdiv5qgxkla3z7zdJWx2IgrceElJe8j7yXt7vB3BDvYCHHCE70h0ymDHHJsRntopM_ZBEQgTUQObH4WgUTafkuWpWN70wUkrz-Ex29Kep5Yucr3SqTGm4h5GKGTZhy8fYc8t2re-UigYTI35djHTIXTzudjQ_eAchZas1rfua8zFsKj9MsPErg4N__tEh7FcBpNUtd_wINuT8GPbWYAVP4CHuJ0n33qqwU1-tuEpK2r1cV6g1OJGwTOutPc5ZXlgJnc9qIq8mvAz6k97QrmgSbO45YWErjRIBk9j3BA0x1oh8AfI0sh1ysygUNMLKD9NMcJJRV4TCp4Fwfel4kggfMXQKjbla-AwsoYsyhEYiwiqO4h7BGXZDxjjNmLoaZS24q-WX8gpDXFNZvKXmLuGQVEk81RJPK4m34PZrxnuJn_HH2KaW8Nq4UrgtaNd7lFYatkx1R62KdZT5OP9l2jXsDCdJnMaPo6cL2NUrla_w2tAoFit5Cdv8o5gtF1fmGH0CAXjC4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LEMMA%3A+Learning+Language-Conditioned+Multi-Robot+Manipulation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Gong%2C+Ran&rft.au=Gao%2C+Xiaofeng&rft.au=Gao%2C+Qiaozi&rft.au=Shakiah%2C+Suhaila&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=8&rft.issue=10&rft.spage=6835&rft_id=info:doi/10.1109%2FLRA.2023.3313058&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |