SACSoN: Scalable Autonomous Control for Social Navigation

Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 9; číslo 1; s. 49 - 56
Hlavní autori: Hirose, Noriaki, Shah, Dhruv, Sridhar, Ajay, Levine, Sergey
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. In this letter, our goal is to develop methods for training policies for socially unobtrusive behavior, such that robots can navigate among humans in ways that don't disturb human behavior in visual navigation using only onboard RGB observations. We introduce a definition for such behavior based on the counterfactual perturbation of the human: If the robot had not intruded into the space, would the human have acted in the same way? By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space. Instantiating this principle requires training policies to minimize their effect on human behavior, and this in turn requires data that allows us to model the behavior of humans in the presence of robots. Therefore, our approach is based on two key contributions. First, we collect a large dataset where an indoor mobile robot interacts with human bystanders. Second, we utilize this dataset to train policies that minimize counterfactual perturbation. We provide supplementary videos and make publicly available the visual navigation dataset on our project page.
AbstractList Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. In this letter, our goal is to develop methods for training policies for socially unobtrusive behavior, such that robots can navigate among humans in ways that don't disturb human behavior in visual navigation using only onboard RGB observations. We introduce a definition for such behavior based on the counterfactual perturbation of the human: If the robot had not intruded into the space, would the human have acted in the same way? By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space. Instantiating this principle requires training policies to minimize their effect on human behavior, and this in turn requires data that allows us to model the behavior of humans in the presence of robots. Therefore, our approach is based on two key contributions. First, we collect a large dataset where an indoor mobile robot interacts with human bystanders. Second, we utilize this dataset to train policies that minimize counterfactual perturbation. We provide supplementary videos and make publicly available the visual navigation dataset on our project page.
Author Hirose, Noriaki
Levine, Sergey
Sridhar, Ajay
Shah, Dhruv
Author_xml – sequence: 1
  givenname: Noriaki
  orcidid: 0000-0003-0361-7383
  surname: Hirose
  fullname: Hirose, Noriaki
  email: noriaki.hirose@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
– sequence: 2
  givenname: Dhruv
  orcidid: 0000-0002-7541-3278
  surname: Shah
  fullname: Shah, Dhruv
  email: shah@eecs.berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
– sequence: 3
  givenname: Ajay
  orcidid: 0009-0008-2268-6097
  surname: Sridhar
  fullname: Sridhar, Ajay
  email: ajaysridhar@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
– sequence: 4
  givenname: Sergey
  orcidid: 0000-0001-6764-2743
  surname: Levine
  fullname: Levine, Sergey
  email: svlevine@eecs.berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
BookMark eNp9kMFLwzAUh4NMcM7dPXgoeO5M8tq08VaKU2FMsHoOaZpKRtfMJBX87-3cDsODp_fg_b73Ht8lmvS21whdE7wgBPO71WuxoJjCAoByRtkZmlLIshgyxiYn_QWae7_BGJOUZsDTKeJVUVZ2fR9VSnay7nRUDMH2dmsHH5W2D852UWtdVFllZBet5Zf5kMHY_gqdt7Lzen6sM_S-fHgrn-LVy-NzWaxiRXEWYpIprHhCSdIQSigkjNYtNCkHkrdpDYTocZbUSQNJLllD67SlqZIc6iRXsoEZuj3s3Tn7OWgfxMYOrh9PCppzzDkA5GOKHVLKWe-dboUy4ffP4KTpBMFib0qMpsTelDiaGkH8B9w5s5Xu-z_k5oAYrfVJHPBoFcMP-2xy6A
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3548134
crossref_primary_10_1109_LRA_2025_3595038
crossref_primary_10_3390_s24092794
crossref_primary_10_1109_LRA_2024_3511409
crossref_primary_10_1016_j_commtr_2025_100207
crossref_primary_10_1109_LRA_2025_3572815
Cites_doi 10.1109/TPAMI.2021.3070543
10.1109/ICRA48891.2023.10161227
10.1109/IROS.2016.7759200
10.1007/s10514-023-10103-x
10.1103/PhysRevE.51.4282
10.1145/3583741
10.15607/RSS.2022.XVIII.019
10.1109/IROS.2012.6385716
10.1109/ICRA48891.2023.10160715
10.1007/s11370-020-00324-9
10.1109/ICIP.2017.8296962
10.1109/LRA.2022.3184025
10.1177/0278364915614638
10.1109/IROS.2018.8593871
10.1109/IROS51168.2021.9636319
10.1109/ARSO54254.2022.9802981
10.1109/TCDS.2017.2751963
10.1145/1957656.1957786
10.1109/AIM.2017.8014190
10.1109/LRA.2019.2925731
10.1177/0278364913503892
10.1117/12.823843
10.1109/ICRA48891.2023.10161504
10.1109/CVPR.2016.91
10.1109/IROS.2017.8202312
10.1109/ICRA.2017.7989037
10.1109/IROS47612.2022.9981958
10.1109/CVPR.2012.6248074
10.1109/ICRA.2019.8794457
10.1109/TRO.2007.904911
10.1109/ICRA40945.2020.9196644
10.1109/LRA.2020.2965416
10.1109/IROS.2013.6696576
10.1109/IROS.2009.5354147
10.1109/ICRA.2019.8794134
10.1109/IROS55552.2023.10342447
10.1109/IROS.2016.7759329
10.1109/IROS55552.2023.10341954
10.1109/ICRA48891.2023.10160761
10.3390/app8112205
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2023.3329626
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 56
ExternalDocumentID 10_1109_LRA_2023_3329626
10305270
Genre orig-research
GrantInformation_xml – fundername: ARL DCIST CRA
  grantid: W911NF-17-2-0181
– fundername: Berkeley DeepDrive at the University of California
– fundername: Berkeley and Toyota Motor North America, Inc.
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c207t-17c0c94214d12123462bf3d59318f5b311e2144b4d348a6d2b5f25ca93b48cad3
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Nov 30 05:30:37 EST 2025
Sat Nov 29 06:03:27 EST 2025
Tue Nov 18 22:18:56 EST 2025
Wed Aug 27 02:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c207t-17c0c94214d12123462bf3d59318f5b311e2144b4d348a6d2b5f25ca93b48cad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6764-2743
0009-0008-2268-6097
0000-0002-7541-3278
0000-0003-0361-7383
PQID 2890993338
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2023_3329626
proquest_journals_2890993338
crossref_primary_10_1109_LRA_2023_3329626
ieee_primary_10305270
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
Chebotar (ref46) 2021; 139
ref17
ref16
ref19
ref18
Xiao (ref21) 2023
ref51
Kim (ref38) 2022
Mavrogiannis (ref20) 2018
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Anderson (ref49) 2018
ref34
Shah (ref10) 2021
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Francis (ref50) 2023
Savinov (ref35) 2018
ref24
ref23
ref26
ref25
ref22
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1109/TPAMI.2021.3070543
– ident: ref39
  doi: 10.1109/ICRA48891.2023.10161227
– start-page: 393
  volume-title: Proc. 6th Conf. Robot Learn.
  year: 2022
  ident: ref38
  article-title: Topological Semantic Graph Memory for Image Goal Navigation
– start-page: 674
  volume-title: Proc. 5th Annu. Conf. Robot Learn.
  year: 2021
  ident: ref10
  article-title: Rapid exploration for open-world navigation with latent goal models
– ident: ref15
  doi: 10.1109/IROS.2016.7759200
– ident: ref23
  doi: 10.1007/s10514-023-10103-x
– ident: ref1
  doi: 10.1103/PhysRevE.51.4282
– ident: ref12
  doi: 10.1145/3583741
– ident: ref37
  doi: 10.15607/RSS.2022.XVIII.019
– ident: ref16
  doi: 10.1109/IROS.2012.6385716
– ident: ref32
  doi: 10.1109/ICRA48891.2023.10160715
– ident: ref9
  doi: 10.1007/s11370-020-00324-9
– start-page: 1708
  volume-title: Proc. Conf. Robot Learn.
  year: 2023
  ident: ref21
  article-title: Learning model predictive controllers with real-time attention for real-world navigation
– ident: ref43
  article-title: Pedestrian detection and tracking by yolov5 and deepsort
– ident: ref42
  doi: 10.1109/ICIP.2017.8296962
– ident: ref4
  doi: 10.1109/LRA.2022.3184025
– ident: ref7
  doi: 10.1177/0278364915614638
– year: 2018
  ident: ref49
  article-title: On evaluation of embodied navigation agents
– ident: ref30
  doi: 10.1109/IROS.2018.8593871
– ident: ref48
  doi: 10.1109/IROS51168.2021.9636319
– start-page: 361
  volume-title: Proc. ACM/IEEE Int. Conf. Hum.-Robot Interact.
  year: 2018
  ident: ref20
  article-title: Social momentum: A framework for legible navigation in dynamic multi-agent environments
– ident: ref51
  doi: 10.1109/ARSO54254.2022.9802981
– ident: ref22
  doi: 10.1109/TCDS.2017.2751963
– ident: ref14
  doi: 10.1145/1957656.1957786
– ident: ref26
  doi: 10.1109/AIM.2017.8014190
– ident: ref8
  doi: 10.1109/LRA.2019.2925731
– ident: ref33
  doi: 10.1177/0278364913503892
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref35
  article-title: Semi-parametric topological memory for navigation
– ident: ref52
  doi: 10.1117/12.823843
– ident: ref47
  article-title: Roomba Drivers
– ident: ref25
  doi: 10.1109/ICRA48891.2023.10161504
– ident: ref40
  doi: 10.1109/CVPR.2016.91
– ident: ref28
  doi: 10.1109/IROS.2017.8202312
– ident: ref29
  doi: 10.1109/ICRA.2017.7989037
– ident: ref44
  doi: 10.1109/IROS47612.2022.9981958
– ident: ref6
  doi: 10.1109/CVPR.2012.6248074
– ident: ref18
  doi: 10.1109/ICRA.2019.8794457
– ident: ref13
  doi: 10.1109/TRO.2007.904911
– ident: ref36
  doi: 10.1109/ICRA40945.2020.9196644
– ident: ref45
  article-title: Ros wrapper for alvar, an open source AR tag tracking library
– ident: ref5
  doi: 10.1109/LRA.2020.2965416
– year: 2023
  ident: ref50
  article-title: Principles and guidelines for evaluating social robot navigation algorithms
– ident: ref2
  doi: 10.1109/IROS.2013.6696576
– ident: ref17
  doi: 10.1109/IROS.2009.5354147
– volume: 139
  start-page: 1518
  volume-title: Proc. 38th Int. Conf. Mach. Learn.
  year: 2021
  ident: ref46
  article-title: Actionable models: Unsupervised offline reinforcement learning of robotic skills
– ident: ref31
  doi: 10.1109/ICRA.2019.8794134
– ident: ref11
  doi: 10.1109/IROS55552.2023.10342447
– ident: ref19
  doi: 10.1109/IROS.2016.7759329
– ident: ref24
  doi: 10.1109/IROS55552.2023.10341954
– ident: ref34
  doi: 10.1109/ICRA48891.2023.10160761
– ident: ref27
  doi: 10.3390/app8112205
– ident: ref41
  article-title: Object detection by yolov5
SSID ssj0001527395
Score 2.3391533
Snippet Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Behavioral sciences
Data Sets for Robot Learning
Datasets
Human behavior
Machine learning
Machine Learning for Robot Control
Navigation
Pedestrians
Perturbation
Perturbation methods
Policies
Prediction models
Predictive models
Robot control
Robot learning
Robots
social navigation
Social robots
Visual observation
Visualization
Title SACSoN: Scalable Autonomous Control for Social Navigation
URI https://ieeexplore.ieee.org/document/10305270
https://www.proquest.com/docview/2890993338
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5ueNCDnxOnc-TgxUO3NEmbxVsZGx60iFPYraRJCoK0snU7-tvNR6cDUfDWQ1LKk6TvV57nBeAaq1CiCKHABLQmQGFUBHksdIAE1bhgIowL32yCpeloPuePDVndcWG01u7ymR7YR1fLV5Vc2VTZ0LbEijAzEXqLMebJWt8JFSslxqNNKRLx4f1TMrDdwQeEYB5b-YQt0-N6qfz4ATurMj385_ccgYPGfYSJX-9jsKPLE7C_JSp4CvgsGc-q9BbODPyWGAWTVW2pCybGh2N_Mx0aVxV6Zi5MxdrJbFRlB7xMJ8_ju6BpkBBIjFgdhEwiySkOqQqtCaIxzguiIm4OahHlJAy1VUTLqSJ0JGKF86jAkRSc5HQkhSJnoF1WpT4HUAqsFXdE2pwWseRWpYdwVHAkjFcUd8Fwg10mG_Vw28TiLXNRBOKZQTuzaGcN2l1w8zXj3Stn_DG2Y9HdGueB7YLeZn2y5mwtM1saNV6Via0vfpl2CfbM26nPlPRAu16s9BXYlev6dbnog9bDx6TvNs8ndzW-kQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXgtzidmoMXD93SfLSLtzIcE2cRN2G3kKYpCLLK1u3vNx-dDkTBWw8JLb-X9L2Xl9_vAXCD81AhhlBgElqToMRUBlkkdYAk1biIZRgVvtlEnKbdyYQ_12R1x4XRWrvLZ7ptH10tPy_Vwh6VdWxLLIZjk6FvMkpx6Ola30cqVkyMs1UxEvHO8CVp2_7gbUIwj6yAwprzcd1UfvyCnV_p7__ziw7AXh1AwsRb_BBs6OkR2F2TFTwGfJT0RmV6B0fGAJYaBZNFZckLJsuHPX83HZpgFXpuLkzl0gltlNMT8Nq_H_cGQd0iIVAYxVUQxgopbqCgeWidEI1wVpCccbNVC5aRMNRWEy2jOaFdGeU4YwVmSnKS0a6SOTkFjWk51WcAKol1zh2VNqNFpLjV6SEcFRxJExdFTdBZYSdUrR9u21i8C5dHIC4M2sKiLWq0m-D2a8aH1874Y-yJRXdtnAe2CVor-4h6d82FLY6auMpk1-e_TLsG24Px01AMH9LHC7Bj3kT9uUkLNKrZQl-CLbWs3uazK7eEPgEL2sCn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SACSoN%3A+Scalable+Autonomous+Control+for+Social+Navigation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Hirose%2C+Noriaki&rft.au=Shah%2C+Dhruv&rft.au=Sridhar%2C+Ajay&rft.au=Levine%2C+Sergey&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=1&rft.spage=49&rft.epage=56&rft_id=info:doi/10.1109%2FLRA.2023.3329626&rft.externalDocID=10305270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon