Accelerated causal Green's function molecular dynamics

A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time scales to be probed for vibration processes in carbon nanomaterials. In causal Green's function molecular dynamics (CGFMD), the tot...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications Vol. 277; p. 108378
Main Authors: Coluci, V.R., Dantas, S.O., Tewary, V.K.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2022
Subjects:
ISSN:0010-4655, 1879-2944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time scales to be probed for vibration processes in carbon nanomaterials. In causal Green's function molecular dynamics (CGFMD), the total interaction potential is expanded up to the quadratic terms, which enables an exact solution of the equations of motion to be obtained for problems within the harmonic approximation, reasonable energy conservation, and fast temporal convergence. Differently from conventional integration algorithms in molecular dynamics, CGFMD performs matrix multiplications and diagonalizations within its main loop, which make its computational cost high and, therefore, has limited its use. In this work, we propose a method to accelerate CGFMD simulations by treating the full system of N atoms as a collection of N smaller systems of size n. Diagonalization is performed for smaller nd×nd dynamical matrices rather than the full Nd×Nd matrix (d=1,2, or 3). The eigenvalues and eigenvectors are then used in the CGFMD equations to update the atomic positions and velocities. We applied the method for one-dimensional lattices of oscillators and have found that the method rapidly converges to the exact solution as n increases. The computational time of the proposed method scales linearly with N, providing a considerable gain with respect to the O(N3) full diagonalization. The method also exhibits better accuracy and energy conservation than the velocity-Verlet algorithm. An OpenMP parallel version has been implemented and tests indicate a speedup of 14× for N= 50000 in affordable computers. Our findings indicate that CGFMD can be an alternative, competitive integration technique for molecular dynamics simulations.
AbstractList A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time scales to be probed for vibration processes in carbon nanomaterials. In causal Green's function molecular dynamics (CGFMD), the total interaction potential is expanded up to the quadratic terms, which enables an exact solution of the equations of motion to be obtained for problems within the harmonic approximation, reasonable energy conservation, and fast temporal convergence. Differently from conventional integration algorithms in molecular dynamics, CGFMD performs matrix multiplications and diagonalizations within its main loop, which make its computational cost high and, therefore, has limited its use. In this work, we propose a method to accelerate CGFMD simulations by treating the full system of N atoms as a collection of N smaller systems of size n. Diagonalization is performed for smaller nd×nd dynamical matrices rather than the full Nd×Nd matrix (d=1,2, or 3). The eigenvalues and eigenvectors are then used in the CGFMD equations to update the atomic positions and velocities. We applied the method for one-dimensional lattices of oscillators and have found that the method rapidly converges to the exact solution as n increases. The computational time of the proposed method scales linearly with N, providing a considerable gain with respect to the O(N3) full diagonalization. The method also exhibits better accuracy and energy conservation than the velocity-Verlet algorithm. An OpenMP parallel version has been implemented and tests indicate a speedup of 14× for N= 50000 in affordable computers. Our findings indicate that CGFMD can be an alternative, competitive integration technique for molecular dynamics simulations.
ArticleNumber 108378
Author Dantas, S.O.
Coluci, V.R.
Tewary, V.K.
Author_xml – sequence: 1
  givenname: V.R.
  orcidid: 0000-0001-5179-6182
  surname: Coluci
  fullname: Coluci, V.R.
  email: coluci@unicamp.br
  organization: School of Technology, University of Campinas - UNICAMP, Limeira, SP, 13484-332, Brazil
– sequence: 2
  givenname: S.O.
  surname: Dantas
  fullname: Dantas, S.O.
  organization: Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
– sequence: 3
  givenname: V.K.
  orcidid: 0000-0001-9204-2758
  surname: Tewary
  fullname: Tewary, V.K.
  organization: Applied Chemical and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
BookMark eNp9j7FqwzAURUVJoUnaD-jmrZPTJ8WyZDqF0KaFQJfs4vnpGRQcOUhJIX9fh3TudLnDudwzE5M4RBbiWcJCgqxf9ws60kKBUmO3S2PvxFRa05SqqaqJmAJIKKta6wcxy3kPAMY0y6moV0Tcc8IT-4LwnLEvNok5vuSiO0c6hSEWh6FnOveYCn-JeAiUH8V9h33mp7-ci93H-279WW6_N1_r1bYkBcaWtbUaW2CPFqS3qsYKKzYK2lY3Xc2apK6Ywei27UZEgYZGeYnKesRuORfyNktpyDlx544pHDBdnAR39XZ7N3q7q7e7eY_M243h8ddP4OQyBY7EPiSmk_ND-If-BYXCYdA
Cites_doi 10.1021/jz4019223
10.1016/j.cpc.2010.10.006
10.1103/PhysRevB.80.161409
10.1103/PhysRevB.74.075420
10.1006/jcph.1995.1039
10.1063/1.481576
10.1016/j.jcp.2015.01.002
10.1186/1741-7007-9-71
10.1103/PhysRevE.97.053310
10.1070/PU1960v003n03ABEH003275
10.1016/j.cpc.2008.12.035
10.1103/PhysRevLett.78.3908
10.1109/99.660313
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2022.108378
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2022_108378
S0010465522000972
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c2078-6885ab0eda801d826a4a4e720bb59f6e5c154ee075bbfc20205092d1a28daaf3
ISSN 0010-4655
IngestDate Sat Nov 29 07:33:45 EST 2025
Fri Feb 23 02:41:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Molecular dynamics
Parallel processing
Green's functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2078-6885ab0eda801d826a4a4e720bb59f6e5c154ee075bbfc20205092d1a28daaf3
ORCID 0000-0001-9204-2758
0000-0001-5179-6182
OpenAccessLink https://doi.org/10.1016/j.cpc.2022.108378
ParticipantIDs crossref_primary_10_1016_j_cpc_2022_108378
elsevier_sciencedirect_doi_10_1016_j_cpc_2022_108378
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Uberuaga, Montalenti, Germann, Voter (br0010) 2005
Binder, Lelièvre, Simpson (br0040) 2015; 284
Coluci (br0190) 2021
Dagum, Menon (br0150) 1998; 5
Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Sorensen (br0180) 1999
Sorensen, Voter (br0060) 2000; 112
Marududin, Montroll, Weiss, Ipatova (br0080) 1971
Campañá, Müser (br0100) 2006; 74
Durrant, McCammon (br0020) 2011; 9
Plimpton (br0140) 1995; 117
Joshi, Raman, Van Duin (br0030) 2013; 4
Chandra (br0160) 2001
Kong, Bartel, Campañá, Denniston, Müser (br0110) 2009; 180
Kong, Denniston, Müser (br0120) 2011; 182
Coluci, Dantas, Tewary (br0130) 2018; 97
Voter (br0050) 1997; 78
Zubarev (br0090) 1960; 3
br0170
Tewary (br0070) 2009; 80
Campañá (10.1016/j.cpc.2022.108378_br0100) 2006; 74
Marududin (10.1016/j.cpc.2022.108378_br0080) 1971
Voter (10.1016/j.cpc.2022.108378_br0050) 1997; 78
Kong (10.1016/j.cpc.2022.108378_br0120) 2011; 182
Dagum (10.1016/j.cpc.2022.108378_br0150) 1998; 5
Joshi (10.1016/j.cpc.2022.108378_br0030) 2013; 4
Zubarev (10.1016/j.cpc.2022.108378_br0090) 1960; 3
Coluci (10.1016/j.cpc.2022.108378_br0190)
Coluci (10.1016/j.cpc.2022.108378_br0130) 2018; 97
Durrant (10.1016/j.cpc.2022.108378_br0020) 2011; 9
Sorensen (10.1016/j.cpc.2022.108378_br0060) 2000; 112
Plimpton (10.1016/j.cpc.2022.108378_br0140) 1995; 117
Kong (10.1016/j.cpc.2022.108378_br0110) 2009; 180
Anderson (10.1016/j.cpc.2022.108378_br0180) 1999
Tewary (10.1016/j.cpc.2022.108378_br0070) 2009; 80
Chandra (10.1016/j.cpc.2022.108378_br0160) 2001
Uberuaga (10.1016/j.cpc.2022.108378_br0010) 2005
Binder (10.1016/j.cpc.2022.108378_br0040) 2015; 284
References_xml – volume: 80
  year: 2009
  ident: br0070
  publication-title: Phys. Rev. B
– volume: 180
  start-page: 1004
  year: 2009
  end-page: 1010
  ident: br0110
  publication-title: Comput. Phys. Commun.
– year: 1971
  ident: br0080
  publication-title: Solid State Physics, Supplement 3
– volume: 112
  start-page: 9599
  year: 2000
  end-page: 9606
  ident: br0060
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: br0140
  publication-title: J. Comput. Phys.
– year: 1999
  ident: br0180
  article-title: LAPACK Users' Guide
– year: 2021
  ident: br0190
  article-title: UNICAMP's research data repository
– volume: 78
  start-page: 3908
  year: 1997
  end-page: 3911
  ident: br0050
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 320
  year: 1960
  ident: br0090
  publication-title: Sov. Phys. Usp.
– volume: 4
  start-page: 3792
  year: 2013
  end-page: 3797
  ident: br0030
  publication-title: J. Phys. Chem. Lett.
– ident: br0170
– volume: 9
  start-page: 71
  year: 2011
  ident: br0020
  publication-title: BMC Biol.
– volume: 97
  year: 2018
  ident: br0130
  publication-title: Phys. Rev. E
– volume: 5
  start-page: 46
  year: 1998
  end-page: 55
  ident: br0150
  publication-title: IEEE Comput. Sci. Eng.
– volume: 74
  year: 2006
  ident: br0100
  publication-title: Phys. Rev. B
– volume: 284
  start-page: 595
  year: 2015
  end-page: 616
  ident: br0040
  publication-title: J. Comput. Phys.
– year: 2001
  ident: br0160
  article-title: Parallel Programming in OpenMP, High Performance Computing
– volume: 182
  start-page: 540
  year: 2011
  end-page: 541
  ident: br0120
  publication-title: Comput. Phys. Commun.
– start-page: 629
  year: 2005
  end-page: 648
  ident: br0010
  article-title: Accelerated Molecular Dynamics Methods
– volume: 4
  start-page: 3792
  issue: 21
  year: 2013
  ident: 10.1016/j.cpc.2022.108378_br0030
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4019223
– volume: 182
  start-page: 540
  issue: 2
  year: 2011
  ident: 10.1016/j.cpc.2022.108378_br0120
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.10.006
– year: 2001
  ident: 10.1016/j.cpc.2022.108378_br0160
– volume: 80
  year: 2009
  ident: 10.1016/j.cpc.2022.108378_br0070
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.161409
– volume: 74
  issue: 7
  year: 2006
  ident: 10.1016/j.cpc.2022.108378_br0100
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.075420
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.cpc.2022.108378_br0140
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 112
  start-page: 9599
  issue: 21
  year: 2000
  ident: 10.1016/j.cpc.2022.108378_br0060
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481576
– volume: 284
  start-page: 595
  year: 2015
  ident: 10.1016/j.cpc.2022.108378_br0040
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.01.002
– volume: 9
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.cpc.2022.108378_br0020
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-9-71
– volume: 97
  year: 2018
  ident: 10.1016/j.cpc.2022.108378_br0130
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.053310
– volume: 3
  start-page: 320
  year: 1960
  ident: 10.1016/j.cpc.2022.108378_br0090
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1960v003n03ABEH003275
– ident: 10.1016/j.cpc.2022.108378_br0190
– start-page: 629
  year: 2005
  ident: 10.1016/j.cpc.2022.108378_br0010
– year: 1999
  ident: 10.1016/j.cpc.2022.108378_br0180
– year: 1971
  ident: 10.1016/j.cpc.2022.108378_br0080
– volume: 180
  start-page: 1004
  issue: 6
  year: 2009
  ident: 10.1016/j.cpc.2022.108378_br0110
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.12.035
– volume: 78
  start-page: 3908
  issue: 20
  year: 1997
  ident: 10.1016/j.cpc.2022.108378_br0050
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.3908
– volume: 5
  start-page: 46
  issue: 1
  year: 1998
  ident: 10.1016/j.cpc.2022.108378_br0150
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/99.660313
SSID ssj0007793
Score 2.3859513
Snippet A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108378
SubjectTerms Green's functions
Molecular dynamics
Parallel processing
Title Accelerated causal Green's function molecular dynamics
URI https://dx.doi.org/10.1016/j.cpc.2022.108378
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LS8NAEMeX2ip4EZ9YX-QgCEpC3G5eJymi-IBatEhvYV8Bi8bSVO3HdzabTWNpQQ9eQliSzeMXZv87mZ1B6NhPQviKOLE9mhCbBD63Iy6YzX3itkJM3cgVebGJoNMJ-_2oW6tdmLUwn69BmoaTSTT8V9TQBrDV0tk_4C47hQbYB-iwBeyw_RX4NucwlKgMEOKM048MGOTBNblnXg1jOfE3Uxb3TOia9FlVpppaD4XjI1OR59N1JKUMv4QH4Xk4wLPz6Eyd3ulYLxN7ch7K1p78ovqX_bNz71SdDTBPNaFupQEFs61SrlUNKC4KsWgTeO6qHPVzrbN2FAwcPlTJIzF2psf-zIQ9M0KVcYMmJG0QQxex6iLWXSyhBg68CMxao3171b8rB-MgKPIuF_dtfmznIX4z9zFfmlTkRm8drRXzBKut-W6gmkw30UpX49hCfoWypSlbOeWTzDKMrZKxZRhvo971Ve_yxi5KYNgcg3iz_TD0KHOloKAkBEwFKaFEBthlzIsSX3ocJLCUoPsYS-AUrNL5YHFOcSgoTVo7qJ6-p3IXWZi1hDK-gRAtIj1MWSJDT7IEJC6BOXgTnZqHj4c60Um88HU3ETGvJy6UmlZgMaBefNreX66xj1anX-ABqo9HH_IQLfPP8Us2Oio4fwNowlrC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+causal+Green%27s+function+molecular+dynamics&rft.jtitle=Computer+physics+communications&rft.au=Coluci%2C+V.R.&rft.au=Dantas%2C+S.O.&rft.au=Tewary%2C+V.K.&rft.date=2022-08-01&rft.issn=0010-4655&rft.volume=277&rft.spage=108378&rft_id=info:doi/10.1016%2Fj.cpc.2022.108378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2022_108378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon