Estimating Bayes factors from minimal summary statistics in repeated measures analysis of variance designs
In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance designs. The formula, which requires knowing only the F-statistic, the number of subjects, and the number of repeated measurements per subject,...
Gespeichert in:
| Veröffentlicht in: | Metodološki zvezki (Spletna izd.) Jg. 17; H. 1; S. 1 - 17 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Ljubljana
Anuska Ferligoj
01.01.2020
|
| Schlagworte: | |
| ISSN: | 1854-0023, 1854-0031 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance designs. The formula, which requires knowing only the F-statistic, the number of subjects, and the number of repeated measurements per subject, is based on the BIC approximation of the Bayes factor, a common default method for Bayesian computation with linear models. In addition to providing computational examples, I report a simulation study in which I demonstrate that the formula compares favorably to a recently developed, more complex method that accounts for correlation between repeated measurements. The minimal BIC method provides a simple way for researchers to estimate Bayes factors from a minimal set of summary statistics, giving users a powerful index for estimating the evidential value of not only their own data, but also the data reported in published studies. |
|---|---|
| AbstractList | In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance designs. The formula, which requires knowing only the F-statistic, the number of subjects, and the number of repeated measurements per subject, is based on the BIC approximation of the Bayes factor, a common default method for Bayesian computation with linear models. In addition to providing computational examples, I report a simulation study in which I demonstrate that the formula compares favorably to a recently developed, more complex method that accounts for correlation between repeated measurements. The minimal BIC method provides a simple way for researchers to estimate Bayes factors from a minimal set of summary statistics, giving users a powerful index for estimating the evidential value of not only their own data, but also the data reported in published studies. |
| Author | Faulkenberry, Thomas J |
| Author_xml | – sequence: 1 givenname: Thomas surname: Faulkenberry middlename: J fullname: Faulkenberry, Thomas J |
| BookMark | eNo9TstKAzEUDVLBWrvwDwKuR5PJJDNZaqkPKLjRdblNbkpKJ1NzZ4T-vQHF1TlwntdsloaEjN1Kca-lVeYBdtEZ3akLNpedbiohlJz981pdsSXRQRRqlWg6O2eHNY2xhzGmPX-CMxIP4MYhF8xDz_uYinrkNPU95DOnsVhLwhGPiWc8IYzoeY9AUy5hSHA8UyQ-BP4NOUJyyD1S3Ce6YZcBjoTLP1ywz-f1x-q12ry_vK0eN5WrRauq0EqJShuxE6gbdGqnhLZOeafAa-W8qH2oXR0a2QnrjO0smMa0DaKXwga1YHe_vac8fE1I4_YwTLkco23dtqYtI6ZTP1JyXRw |
| CitedBy_id | crossref_primary_10_2478_bile_2021_0001 crossref_primary_10_1162_opmi_a_00068 crossref_primary_10_1186_s41235_022_00355_z crossref_primary_10_2478_bile_2023_0001 |
| ContentType | Journal Article |
| Copyright | Copyright Anuska Ferligoj 2020 |
| Copyright_xml | – notice: Copyright Anuska Ferligoj 2020 |
| DBID | 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR BYOGL CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PADUT PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| DOI | 10.51936/abic6583 |
| DatabaseName | ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central East Europe, Central Europe Database ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep |
| Database_xml | – sequence: 1 dbid: BYOGL name: East Europe, Central Europe Database url: https://search.proquest.com/eastcentraleurope sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1854-0031 |
| EndPage | 17 |
| Genre | Feature |
| GroupedDBID | 3V. 7XB 8FK 8G5 ABDBF ABUWG ACIPV ACUHS AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM AZQEC BENPR BYOGL CCPQU DWQXO ESX GNUQQ GUQSH M2O MBDVC PADUT PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS Q9U TUS |
| ID | FETCH-LOGICAL-c2073-f711e3560b0e54ec3b3059c3dc3ad53cd02df2c2f41809c6989a64674eed109f3 |
| IEDL.DBID | BENPR |
| ISSN | 1854-0023 |
| IngestDate | Mon Jun 30 06:15:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2073-f711e3560b0e54ec3b3059c3dc3ad53cd02df2c2f41809c6989a64674eed109f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| OpenAccessLink | https://mz.mf.uni-lj.si/article/download/202/291 |
| PQID | 2776707368 |
| PQPubID | 1396367 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2776707368 |
| PublicationCentury | 2000 |
| PublicationDate | 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Ljubljana |
| PublicationPlace_xml | – name: Ljubljana |
| PublicationTitle | Metodološki zvezki (Spletna izd.) |
| PublicationYear | 2020 |
| Publisher | Anuska Ferligoj |
| Publisher_xml | – name: Anuska Ferligoj |
| SSID | ssj0002930489 |
| Score | 2.1236093 |
| Snippet | In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 1 |
| SubjectTerms | Within-subjects design |
| Title | Estimating Bayes factors from minimal summary statistics in repeated measures analysis of variance designs |
| URI | https://www.proquest.com/docview/2776707368 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVoy8BC-RQfpfLAajWx3SSeEEWtWCgVAqlb5fgDFYm0NFCJf89d4sKAxMIcyUqsd_fOF997hFyiZrlPbcIyIVMmbWqZyr1iCfbbfGSAQWuziXQ8zqZTNQkNtzJcq9zkxCpR24XBHnmPo-wM4DHJrpZvDF2j8O9qsNBokBYqlQHOW4PhePLw3WUBMgOIYg0MvCQZMlQtL4SFS9LT-dwABYtfibhil1H7v--1R3ZDXUmvayDsky1XHJB2qDFpiODykLwMIaaxSi2e6UB_upIGxx2KgyYUlUZeYZ0w00Zx3qiWcqbzgq7cElI3rPdadxZLqoOmCV14uoZjN2KI2upWSHlEnkbDx5tbFvwWmOHwBcyncewElEB55PrSGZFDMlBGWCO07QtjI249N9xLFP0yaD2pE3QrAZ6NI-XFMWkWi8KdEKoTFYu4b6zyUiotMoO67wJgASd5LeQp6Wx2cxaCppz9bOXZ34_PyQ7HY2_VCemQ5vvqw12QbbOGHVl1Awa6pHHH778AHAu-Sw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILZRVLAR_gaNHYbtIcEGIVVaFwAIlbcbygIjWFhkX9Kb6RmSSFAxI3DpyjWIpnPG9m4nkPYIc4y31kQ96UKuLKRpbHiY95SP02XzeIoIXYRNTpNO_u4usJ-BjPwtC1ynFMzAO1HRjqke8Jop1BfwybB0_PnFSj6O_qWEKjcIu2G71jyZbtt07QvrtCnJ3eHJ_zUlWAG4Hvcx8FgZMI9EndNZQzMkGXj420RmrbkMbWhfXCCK-I2sqQwKIOSZMD0SSox17iupMwpagSoquC4uqrp4PQiQeCMm5EQcUJDwsyI0qTwj2d9AwCvvwR9nMsO6v-t12Yh7kya2aHhZsvwIRLF6FaZtCsjE_ZEjyeYsSiHDx9YEd65DJW6gkxGqNhxKPSx3XKiT1G01QFUTXrpWzonhCYcL1-0TfNmC4ZW9jAszc9pP6PYza_85Itw-2ffPEKVNJB6laB6TAOZNAwNvZKxVo2DbHaS3R6lwgt1RrUxtbrliEh636bbv33x9swc35zedG9aHXaGzArqMDPez41qLwMX90mTJs33J3hVu59DO7_2tCfp0YX0w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB60injxLT6q5qDH0G6S7nYPIj5aFKUUUfBWs3mIglvt-qB_zV_nTDfVg-DNg-eFgc1M5ptMMt8HsEuc5T6xMW9KlXBlE8vTzKc8pn6brxtE0FJsIul0mjc3aXcCPsazMPSscpwTR4na9g31yGuCaGcwHuNmzYdnEd2T9sHTMycFKbppHctplCFy7obveHwr9s9O0Nd7QrRbV8enPCgMcCPQFvdJFDmJoJ_VXUM5IzMM_9RIa6S2DWlsXVgvjPCKaK4MiS3qmPQ5EFmieuol2p2EqQSLDFWBqaNWp3v51eFBIMXtQfU3YqLihI4ltREVTXFNZ_cG4V_-AIERsrXn__OaLMBcqKfZYbkBFmHC5UswH2prFjJXsQwPLcxlVJ3nd-xID13BgtIQowEbRgwrj2gnzPIxmrMqKazZfc4G7gkhC-09lh3VgunA5cL6nr3pAXWGHLOj1zDFClz_yR-vQiXv524NmI7TSEYNY1OvVKpl0xDfvcTt4DKhpVqH6tiTvZAsit63Gzd-_7wDM-jf3sVZ53wTZgWd_EfNoCpUXgavbgumzRsuzmA7hCKD27_29Cdy0yHw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Bayes+factors+from+minimal+summary+statistics+in+repeated+measures+analysis+of+variance+designs&rft.jtitle=Metodolo%C5%A1ki+zvezki+%28Spletna+izd.%29&rft.au=Faulkenberry%2C+Thomas+J&rft.date=2020-01-01&rft.pub=Anuska+Ferligoj&rft.issn=1854-0023&rft.eissn=1854-0031&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.51936%2Fabic6583&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1854-0023&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1854-0023&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1854-0023&client=summon |