Ary Distributed Arithmetic Coding for Uniform -Ary Sources
Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density P...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 69; no. 1; pp. 47 - 74 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC for uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources with Laplace-distributed correlation. |
|---|---|
| AbstractList | Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC for uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources with Laplace-distributed correlation. Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze [Formula Omitted]-ary DAC for uniform [Formula Omitted]-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that [Formula Omitted]-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform [Formula Omitted]-ary sources with Laplace-distributed correlation. |
| Author | Fang, Yong |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-3345-8259 surname: Fang fullname: Fang, Yong email: fy@chd.edu.cn organization: School of Information Engineering, Chang'an University, Xi'an, China |
| BookMark | eNp9kEtLAzEQx4NUsK3eBS8LnrfmvRtvpb4KBQ-255DNJprSbmqSPfTbm6XFgwdPwwz_x_CbgFHnOwPALYIzhKB4WC_XMwwxnhGMEa7FBRgjxqpScEZHYAwhqktBaX0FJjFu80oZwmPwOA_H4snFFFzTJ9MW8-DS194kp4uFb133WVgfik3n8tgX5SD_8H3QJl6DS6t20dyc5xRsXp7Xi7dy9f66XMxXpcaQp9IKaq0ljeVKV0S0RAhmBeO64pDUuqa25cLWVhDa5KNqkdJtpWyllTENYWQK7k-5h-C_exOT3OYHulwpccUqVMMhaQrgSaWDjzEYKw_B7VU4SgTlQEhmQnIgJM-EsoX_sWiXVHK-S0G53X_Gu5PRGWN-e0TGywUkP_jbdM0 |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_LCOMM_2023_3237285 crossref_primary_10_1109_TIT_2024_3421253 |
| Cites_doi | 10.3390/e19080389 10.1109/TCOMM.2009.09.080018 10.1109/TIT.2021.3116082 10.1109/LCOMM.2002.804244 10.1109/LCOMM.2007.071172 10.1109/26.950341 10.1109/TIT.1973.1055037 10.1109/ICIP.2007.4379079 10.1109/TCOMM.2016.2518680 10.1109/TCOMM.2013.111313.130230 10.1109/JSEN.2013.2257944 10.1109/18.910578 10.1016/j.image.2019.03.016 10.1109/TIT.2004.839541 10.1109/TCOMM.2016.2599535 10.1109/ISIT.2012.6284254 10.1109/TIT.2009.2032815 10.1145/214762.214771 10.1109/TIT.2020.3014965 10.1109/18.910577 10.1109/ICC.2004.1312605 10.1109/TIT.2009.2025527 10.1016/j.image.2008.04.009 10.1109/CWIT.2015.7255140 10.1109/26.554275 10.1007/978-981-15-9960-6_2 10.1109/TSP.2009.2023359 10.1147/rd.203.0198 10.1109/TCOMM.2005.849690 10.1109/TSP.2009.2014280 10.1109/TCOMM.2013.012913.120486 10.1109/4234.681360 10.1109/TCOMM.2008.060527 10.1109/4234.957380 10.1109/TCOMM.2013.112613.120796 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2022.3221289 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 74 |
| ExternalDocumentID | 10_1109_TIT_2022_3221289 9944690 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: 62141101 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c206t-f94fff3bf6ac739d3995f956c76038c84fd69f8f934b6c7ad1acd7af7caeeb353 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Sun Nov 09 06:05:56 EST 2025 Tue Nov 18 21:35:28 EST 2025 Sat Nov 29 03:31:49 EST 2025 Wed Aug 27 02:02:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c206t-f94fff3bf6ac739d3995f956c76038c84fd69f8f934b6c7ad1acd7af7caeeb353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3345-8259 |
| PQID | 2757180760 |
| PQPubID | 36024 |
| PageCount | 28 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2022_3221289 proquest_journals_2757180760 crossref_citationtrail_10_1109_TIT_2022_3221289 ieee_primary_9944690 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. 2023-1-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Kuipers (ref31) 1974 ref24 ref23 (ref39) 2022 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Fang (ref32) 2021 ref9 ref4 ref3 ref6 ref5 MacKay (ref38) 2003 |
| References_xml | – ident: ref27 doi: 10.3390/e19080389 – ident: ref4 doi: 10.1109/TCOMM.2009.09.080018 – ident: ref24 doi: 10.1109/TIT.2021.3116082 – ident: ref6 doi: 10.1109/LCOMM.2002.804244 – ident: ref15 doi: 10.1109/LCOMM.2007.071172 – ident: ref13 doi: 10.1109/26.950341 – ident: ref1 doi: 10.1109/TIT.1973.1055037 – ident: ref17 doi: 10.1109/ICIP.2007.4379079 – ident: ref19 doi: 10.1109/TCOMM.2016.2518680 – ident: ref9 doi: 10.1109/TCOMM.2013.111313.130230 – ident: ref25 doi: 10.1109/JSEN.2013.2257944 – ident: ref34 doi: 10.1109/18.910578 – ident: ref28 doi: 10.1016/j.image.2019.03.016 – ident: ref36 doi: 10.1109/TIT.2004.839541 – ident: ref21 doi: 10.1109/TCOMM.2016.2599535 – ident: ref7 doi: 10.1109/ISIT.2012.6284254 – ident: ref3 doi: 10.1109/TIT.2009.2032815 – volume-title: Optimizing Sparse Graph Codes Over GF(q) year: 2003 ident: ref38 – ident: ref11 doi: 10.1145/214762.214771 – ident: ref22 doi: 10.1109/TIT.2020.3014965 – ident: ref33 doi: 10.1109/18.910577 – ident: ref35 doi: 10.1109/ICC.2004.1312605 – ident: ref2 doi: 10.1109/TIT.2009.2025527 – ident: ref8 doi: 10.1016/j.image.2008.04.009 – ident: ref26 doi: 10.1109/CWIT.2015.7255140 – volume-title: arXiv:2101.02336 year: 2021 ident: ref32 article-title: Distributed arithmetic coding for sources with hidden Markov correlation – ident: ref12 doi: 10.1109/26.554275 – ident: ref30 doi: 10.1007/978-981-15-9960-6_2 – volume-title: Software Package of Qary DAC year: 2022 ident: ref39 – ident: ref18 doi: 10.1109/TSP.2009.2023359 – ident: ref10 doi: 10.1147/rd.203.0198 – ident: ref14 doi: 10.1109/TCOMM.2005.849690 – ident: ref16 doi: 10.1109/TSP.2009.2014280 – ident: ref20 doi: 10.1109/TCOMM.2013.012913.120486 – ident: ref29 doi: 10.1109/4234.681360 – volume-title: Uniform Distribution of Sequences year: 1974 ident: ref31 – ident: ref37 doi: 10.1109/TCOMM.2008.060527 – ident: ref5 doi: 10.1109/4234.957380 – ident: ref23 doi: 10.1109/TCOMM.2013.112613.120796 |
| SSID | ssj0014512 |
| Score | 2.4277203 |
| Snippet | Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47 |
| SubjectTerms | Arithmetic coding Codec Codes Correlation coset cardinality spectrum Decoding distributed arithmetic coding Distributed source coding Encoding Error correcting codes Intervals Laplace equations nonbinary sources Parameters Parity check codes Slepian-Wolf coding Symbols |
| Title | Ary Distributed Arithmetic Coding for Uniform -Ary Sources |
| URI | https://ieeexplore.ieee.org/document/9944690 https://www.proquest.com/docview/2757180760 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA_b8EEfnG6K0yl98EWw27W93vV8G9OhIENwwt7K9e6CA91kH4L_vXdtNxRF8K2UBEpyueSXNAnAueERiy3a8SWGxqeGEN_6dfRpTIiOTMKYykfm3_PhMBmPxUMFLje9MMaY_Ocz03GPeS1fz9TKpcq6QlCH5qpQ5ZwXvVqbigGNg2IyeGAN2GKOdUmSiO7obmSBYBh27OG117H45oLynSo_LuLcuwzq__uuPdgto0ivV6h9Hypm2oD6ekODVxpsA3a-jBtswlVv_uFdu0m5bsmV0ZZ_snx-dW2MXn_mnJhnQ1jPhqEukvV8R_6YJ_cXB_A0uBn1b_1yd4KvQsKWPgqKiFGGTCoeCe06WNFiIcUZiRKVUNRMYIIiopl9KXUgleYSuZLG4us4OoTadDY1R-BpZWigUBmdCSopkxKTDAXGCSPIOWtBdy3OVJWDxd1-i5c0BxhEpFYBqVNAWiqgBRcbjrdiqMYftE0n8A1dKesWtNcaS0urW6Qhj62rdbXG49-5TmDbrYsvUihtqC3nK3MKW-p9OVnMz_ID9QmEvMhr |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9-gfrgx6Y4P_vgi2C3a3u96_kmfqA4h2CFvZXb3QUHusnWCf733rXdUBTBt1ISKMnlkl_SJADHhkcstmjHlxganxpCfOvX0acxIToyCWOqGJnf5p1O0u2Khzk4nfXCGGOKn89M0z0WtXw9VBOXKmsJQR2am4fFmNIwKLu1ZjUDGgflbPDAmrBFHdOiJBGt9Da1UDAMm_b42gtZfHNCxVaVH1dx4V-u1__3ZRuwVsWR3nmp-E2YM4MarE93NHiVydZg9cvAwTqcnY8-vEs3K9etuTLa8vfz51fXyOhdDJ0b82wQ69lA1MWynu_IH4v0_ngLnq6v0osbv9qe4KuQsNxHQREx6iGTikdCux5WtGhIcUaiRCUUNROYoIhoz76UOpBKc4lcSWMRdhxtw8JgODA74GllaKBQGd0TVFImJSY9FBgnjCDnrAGtqTgzVY0WdxsuXrICYhCRWQVkTgFZpYAGnMw43sqxGn_Q1p3AZ3SVrBuwP9VYVtndOAt5bJ2tqzbu_s51BMs36X07a9927vZgxS2PLxMq-7CQjybmAJbUe94fjw6Lw_UJGzTLsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ary+Distributed+Arithmetic+Coding+for+Uniform+-Ary+Sources&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Fang%2C+Yong&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=69&rft.issue=1&rft.spage=47&rft.epage=74&rft_id=info:doi/10.1109%2FTIT.2022.3221289&rft.externalDocID=9944690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |