Ary Distributed Arithmetic Coding for Uniform -Ary Sources

Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density P...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 69; no. 1; pp. 47 - 74
Main Author: Fang, Yong
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC for uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources with Laplace-distributed correlation.
AbstractList Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC for uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-ary sources with Laplace-distributed correlation.
Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos. Usually, distributed coding of correlated nonbinary sources, e.g., distributed video coding, is implemented by binary or nonbinary Low-Density Parity-Check (LDPC) codes. In this paper, as an alternative, we attempt using nonbinary Distributed Arithmetic Coding (DAC) to implement distributed coding of uniform nonbinary sources with Laplace-distributed correlation. To analyze [Formula Omitted]-ary DAC for uniform [Formula Omitted]-ary sources, following the methodology developed in our prior work for binary DAC, we define and deduce Coset Cardinality Spectrum (CCS) from both fixed-length and variable-length perspectives, whose physical meanings are explained in detail; while for binary DAC, our prior work totally ignored the subtle difference between these two perspectives. Compared with binary DAC, an important advantage of nonbinary DAC is that, the mapping from source symbols to coding intervals is so flexible that there are many parameters that can be tuned to achieve better performance; while for binary DAC, there are very few tunable parameters, making it very hard to achieve better performance. This paper proposes a simple method to map source symbols onto coding intervals, which results in a very lightweight codec, while possessing a good Manhattan distance distribution. Then this paper deduces the formula of path metrics for decoder design by making use of CCS. All theoretical analyses are perfectly verified by simulation results. Most important, experimental results show that [Formula Omitted]-ary DAC achieves significantly better performance than LDPC codes for distributed coding of uniform [Formula Omitted]-ary sources with Laplace-distributed correlation.
Author Fang, Yong
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-3345-8259
  surname: Fang
  fullname: Fang, Yong
  email: fy@chd.edu.cn
  organization: School of Information Engineering, Chang'an University, Xi'an, China
BookMark eNp9kEtLAzEQx4NUsK3eBS8LnrfmvRtvpb4KBQ-255DNJprSbmqSPfTbm6XFgwdPwwz_x_CbgFHnOwPALYIzhKB4WC_XMwwxnhGMEa7FBRgjxqpScEZHYAwhqktBaX0FJjFu80oZwmPwOA_H4snFFFzTJ9MW8-DS194kp4uFb133WVgfik3n8tgX5SD_8H3QJl6DS6t20dyc5xRsXp7Xi7dy9f66XMxXpcaQp9IKaq0ljeVKV0S0RAhmBeO64pDUuqa25cLWVhDa5KNqkdJtpWyllTENYWQK7k-5h-C_exOT3OYHulwpccUqVMMhaQrgSaWDjzEYKw_B7VU4SgTlQEhmQnIgJM-EsoX_sWiXVHK-S0G53X_Gu5PRGWN-e0TGywUkP_jbdM0
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_LCOMM_2023_3237285
crossref_primary_10_1109_TIT_2024_3421253
Cites_doi 10.3390/e19080389
10.1109/TCOMM.2009.09.080018
10.1109/TIT.2021.3116082
10.1109/LCOMM.2002.804244
10.1109/LCOMM.2007.071172
10.1109/26.950341
10.1109/TIT.1973.1055037
10.1109/ICIP.2007.4379079
10.1109/TCOMM.2016.2518680
10.1109/TCOMM.2013.111313.130230
10.1109/JSEN.2013.2257944
10.1109/18.910578
10.1016/j.image.2019.03.016
10.1109/TIT.2004.839541
10.1109/TCOMM.2016.2599535
10.1109/ISIT.2012.6284254
10.1109/TIT.2009.2032815
10.1145/214762.214771
10.1109/TIT.2020.3014965
10.1109/18.910577
10.1109/ICC.2004.1312605
10.1109/TIT.2009.2025527
10.1016/j.image.2008.04.009
10.1109/CWIT.2015.7255140
10.1109/26.554275
10.1007/978-981-15-9960-6_2
10.1109/TSP.2009.2023359
10.1147/rd.203.0198
10.1109/TCOMM.2005.849690
10.1109/TSP.2009.2014280
10.1109/TCOMM.2013.012913.120486
10.1109/4234.681360
10.1109/TCOMM.2008.060527
10.1109/4234.957380
10.1109/TCOMM.2013.112613.120796
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3221289
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 74
ExternalDocumentID 10_1109_TIT_2022_3221289
9944690
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 62141101
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c206t-f94fff3bf6ac739d3995f956c76038c84fd69f8f934b6c7ad1acd7af7caeeb353
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Nov 09 06:05:56 EST 2025
Tue Nov 18 21:35:28 EST 2025
Sat Nov 29 03:31:49 EST 2025
Wed Aug 27 02:02:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-f94fff3bf6ac739d3995f956c76038c84fd69f8f934b6c7ad1acd7af7caeeb353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3345-8259
PQID 2757180760
PQPubID 36024
PageCount 28
ParticipantIDs crossref_primary_10_1109_TIT_2022_3221289
proquest_journals_2757180760
crossref_citationtrail_10_1109_TIT_2022_3221289
ieee_primary_9944690
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Kuipers (ref31) 1974
ref24
ref23
(ref39) 2022
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Fang (ref32) 2021
ref9
ref4
ref3
ref6
ref5
MacKay (ref38) 2003
References_xml – ident: ref27
  doi: 10.3390/e19080389
– ident: ref4
  doi: 10.1109/TCOMM.2009.09.080018
– ident: ref24
  doi: 10.1109/TIT.2021.3116082
– ident: ref6
  doi: 10.1109/LCOMM.2002.804244
– ident: ref15
  doi: 10.1109/LCOMM.2007.071172
– ident: ref13
  doi: 10.1109/26.950341
– ident: ref1
  doi: 10.1109/TIT.1973.1055037
– ident: ref17
  doi: 10.1109/ICIP.2007.4379079
– ident: ref19
  doi: 10.1109/TCOMM.2016.2518680
– ident: ref9
  doi: 10.1109/TCOMM.2013.111313.130230
– ident: ref25
  doi: 10.1109/JSEN.2013.2257944
– ident: ref34
  doi: 10.1109/18.910578
– ident: ref28
  doi: 10.1016/j.image.2019.03.016
– ident: ref36
  doi: 10.1109/TIT.2004.839541
– ident: ref21
  doi: 10.1109/TCOMM.2016.2599535
– ident: ref7
  doi: 10.1109/ISIT.2012.6284254
– ident: ref3
  doi: 10.1109/TIT.2009.2032815
– volume-title: Optimizing Sparse Graph Codes Over GF(q)
  year: 2003
  ident: ref38
– ident: ref11
  doi: 10.1145/214762.214771
– ident: ref22
  doi: 10.1109/TIT.2020.3014965
– ident: ref33
  doi: 10.1109/18.910577
– ident: ref35
  doi: 10.1109/ICC.2004.1312605
– ident: ref2
  doi: 10.1109/TIT.2009.2025527
– ident: ref8
  doi: 10.1016/j.image.2008.04.009
– ident: ref26
  doi: 10.1109/CWIT.2015.7255140
– volume-title: arXiv:2101.02336
  year: 2021
  ident: ref32
  article-title: Distributed arithmetic coding for sources with hidden Markov correlation
– ident: ref12
  doi: 10.1109/26.554275
– ident: ref30
  doi: 10.1007/978-981-15-9960-6_2
– volume-title: Software Package of Qary DAC
  year: 2022
  ident: ref39
– ident: ref18
  doi: 10.1109/TSP.2009.2023359
– ident: ref10
  doi: 10.1147/rd.203.0198
– ident: ref14
  doi: 10.1109/TCOMM.2005.849690
– ident: ref16
  doi: 10.1109/TSP.2009.2014280
– ident: ref20
  doi: 10.1109/TCOMM.2013.012913.120486
– ident: ref29
  doi: 10.1109/4234.681360
– volume-title: Uniform Distribution of Sequences
  year: 1974
  ident: ref31
– ident: ref37
  doi: 10.1109/TCOMM.2008.060527
– ident: ref5
  doi: 10.1109/4234.957380
– ident: ref23
  doi: 10.1109/TCOMM.2013.112613.120796
SSID ssj0014512
Score 2.4277203
Snippet Laplacian distribution is widely used to model the differences between correlated continuous or nonbinary signals, e.g., the predictive residues of videos....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Arithmetic coding
Codec
Codes
Correlation
coset cardinality spectrum
Decoding
distributed arithmetic coding
Distributed source coding
Encoding
Error correcting codes
Intervals
Laplace equations
nonbinary sources
Parameters
Parity check codes
Slepian-Wolf coding
Symbols
Title Ary Distributed Arithmetic Coding for Uniform -Ary Sources
URI https://ieeexplore.ieee.org/document/9944690
https://www.proquest.com/docview/2757180760
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA_b8EEfnG6K0yl98EWw27W93vV8G9OhIENwwt7K9e6CA91kH4L_vXdtNxRF8K2UBEpyueSXNAnAueERiy3a8SWGxqeGEN_6dfRpTIiOTMKYykfm3_PhMBmPxUMFLje9MMaY_Ocz03GPeS1fz9TKpcq6QlCH5qpQ5ZwXvVqbigGNg2IyeGAN2GKOdUmSiO7obmSBYBh27OG117H45oLynSo_LuLcuwzq__uuPdgto0ivV6h9Hypm2oD6ekODVxpsA3a-jBtswlVv_uFdu0m5bsmV0ZZ_snx-dW2MXn_mnJhnQ1jPhqEukvV8R_6YJ_cXB_A0uBn1b_1yd4KvQsKWPgqKiFGGTCoeCe06WNFiIcUZiRKVUNRMYIIiopl9KXUgleYSuZLG4us4OoTadDY1R-BpZWigUBmdCSopkxKTDAXGCSPIOWtBdy3OVJWDxd1-i5c0BxhEpFYBqVNAWiqgBRcbjrdiqMYftE0n8A1dKesWtNcaS0urW6Qhj62rdbXG49-5TmDbrYsvUihtqC3nK3MKW-p9OVnMz_ID9QmEvMhr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9-gfrgx6Y4P_vgi2C3a3u96_kmfqA4h2CFvZXb3QUHusnWCf733rXdUBTBt1ISKMnlkl_SJADHhkcstmjHlxganxpCfOvX0acxIToyCWOqGJnf5p1O0u2Khzk4nfXCGGOKn89M0z0WtXw9VBOXKmsJQR2am4fFmNIwKLu1ZjUDGgflbPDAmrBFHdOiJBGt9Da1UDAMm_b42gtZfHNCxVaVH1dx4V-u1__3ZRuwVsWR3nmp-E2YM4MarE93NHiVydZg9cvAwTqcnY8-vEs3K9etuTLa8vfz51fXyOhdDJ0b82wQ69lA1MWynu_IH4v0_ngLnq6v0osbv9qe4KuQsNxHQREx6iGTikdCux5WtGhIcUaiRCUUNROYoIhoz76UOpBKc4lcSWMRdhxtw8JgODA74GllaKBQGd0TVFImJSY9FBgnjCDnrAGtqTgzVY0WdxsuXrICYhCRWQVkTgFZpYAGnMw43sqxGn_Q1p3AZ3SVrBuwP9VYVtndOAt5bJ2tqzbu_s51BMs36X07a9927vZgxS2PLxMq-7CQjybmAJbUe94fjw6Lw_UJGzTLsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ary+Distributed+Arithmetic+Coding+for+Uniform+-Ary+Sources&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Fang%2C+Yong&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=69&rft.issue=1&rft.spage=47&rft.epage=74&rft_id=info:doi/10.1109%2FTIT.2022.3221289&rft.externalDocID=9944690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon