Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing

Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 66; číslo 5; s. 3794 - 3803
Hlavní autoři: Shi, Chengming, Panoutsos, George, Luo, Bo, Liu, Hongqi, Li, Bin, Lin, Xu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast part quality. In this paper, a novel deep learning data-driven modeling framework is presented, which includes a fusion of multiple stacked sparse autoencoders for tool condition monitoring in ultraprecision machining. The proposed computational framework consists of two main structures. First, a training model that is designed with the ability to process multiple parallel feature spaces to learn the lower-level features. Second, a feature fusion structure that is used to learn the higher-level features and associations to tool wear. To achieve this learning structure, a modified loss function is utilized that enhances the feature extraction and classification tasks. A dataset from a real manufacturing process is used to demonstrate the performance of the proposed framework. Experimental results and simulations show that the proposed method successfully classifies the ultraprecision machining case study with over 96% accuracy, while also outperforming comparable methodologies.
AbstractList Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast part quality. In this paper, a novel deep learning data-driven modeling framework is presented, which includes a fusion of multiple stacked sparse autoencoders for tool condition monitoring in ultraprecision machining. The proposed computational framework consists of two main structures. First, a training model that is designed with the ability to process multiple parallel feature spaces to learn the lower-level features. Second, a feature fusion structure that is used to learn the higher-level features and associations to tool wear. To achieve this learning structure, a modified loss function is utilized that enhances the feature extraction and classification tasks. A dataset from a real manufacturing process is used to demonstrate the performance of the proposed framework. Experimental results and simulations show that the proposed method successfully classifies the ultraprecision machining case study with over 96% accuracy, while also outperforming comparable methodologies.
Author Lin, Xu
Li, Bin
Luo, Bo
Liu, Hongqi
Shi, Chengming
Panoutsos, George
Author_xml – sequence: 1
  givenname: Chengming
  orcidid: 0000-0002-6530-5695
  surname: Shi
  fullname: Shi, Chengming
  email: 513864035@qq.com
  organization: Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: George
  orcidid: 0000-0002-7395-8418
  surname: Panoutsos
  fullname: Panoutsos, George
  email: g.panoutsos@sheffield.ac.uk
  organization: Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-2249-8263
  surname: Luo
  fullname: Luo, Bo
  email: hglobo@163.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Hongqi
  surname: Liu
  fullname: Liu, Hongqi
  email: liuhongqi328@163.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Bin
  orcidid: 0000-0002-8722-8934
  surname: Li
  fullname: Li, Bin
  email: li_bin_hust@163.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Xu
  surname: Lin
  fullname: Lin, Xu
  email: m201670426@hust.edu.cn
  organization: Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kD1PwzAQhi0EEm1hR2KJxJxiO7HjjFBaqNSKgXaOHOeMXAU72MnAv8ehFQMD0w3vl-6ZonPrLCB0Q_CcEFze79bLOcVEzKlgnJTZGZoQxoq0LHNxjiaYFiLFOOeXaBrCAWOSM8ImyO2Dse_Jdmh707WQrkD2g4f0rZMKQvooAzTJE0CXbEB6O3q188nOuTZZONuY3jibbJ01vfOjamyyb3svOw_KhB9R2kFLFWujfoUutGwDXJ_uDO1Xy93iJd28Pq8XD5tUUcz7FGSmMk6pFFjTPKubguQYJKkbJotc1mUsVKzkKtNMKcJ5VnPGNWtqjZUuy2yG7o69nXefA4S-OrjB2zhZUcKpwHkhRHTho0t5F4IHXXXefEj_VRFcjViriLUasVYnrDHC_0SU6eVIIT5t2v-Ct8egAYDfHZFTEh_MvgFMB4iv
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_rcim_2025_102962
crossref_primary_10_1016_j_simpat_2019_101981
crossref_primary_10_3390_e25020242
crossref_primary_10_1016_j_precisioneng_2022_11_014
crossref_primary_10_1177_09544054231202889
crossref_primary_10_1088_1361_6501_acf594
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_1016_j_cirp_2019_03_010
crossref_primary_10_1109_ACCESS_2020_3042874
crossref_primary_10_1109_ACCESS_2020_3047205
crossref_primary_10_1109_TIE_2021_3102443
crossref_primary_10_1109_TIM_2021_3077995
crossref_primary_10_1007_s10845_022_02044_6
crossref_primary_10_1016_j_neucom_2020_04_073
crossref_primary_10_1016_j_measurement_2022_111716
crossref_primary_10_1016_j_ymssp_2023_110644
crossref_primary_10_1007_s11740_024_01319_6
crossref_primary_10_1007_s40684_024_00679_9
crossref_primary_10_1016_j_jmapro_2024_07_002
crossref_primary_10_1016_j_jmsy_2023_06_010
crossref_primary_10_1016_j_matpr_2020_11_351
crossref_primary_10_3390_e24121733
crossref_primary_10_1016_j_measurement_2021_108973
crossref_primary_10_1109_TII_2024_3476547
crossref_primary_10_1016_j_jmsy_2024_03_008
crossref_primary_10_1109_MIE_2020_3023075
crossref_primary_10_1007_s12008_025_02387_3
crossref_primary_10_1016_j_ijmecsci_2020_106111
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1016_j_measurement_2023_114076
crossref_primary_10_1016_j_ifacol_2019_09_142
crossref_primary_10_1016_j_jmsy_2024_05_017
crossref_primary_10_1016_j_eswa_2023_121076
crossref_primary_10_3390_s23031240
crossref_primary_10_1016_j_eswa_2024_124376
crossref_primary_10_1016_j_cie_2023_109359
crossref_primary_10_1109_TIM_2025_3600723
crossref_primary_10_1016_j_precisioneng_2020_11_001
crossref_primary_10_3390_app10113755
crossref_primary_10_1007_s00170_021_07325_7
crossref_primary_10_1007_s00170_022_09762_4
crossref_primary_10_1080_0951192X_2023_2228271
crossref_primary_10_1177_15501329221102077
crossref_primary_10_1007_s12541_020_00388_8
crossref_primary_10_3390_machines9120369
crossref_primary_10_1007_s40857_021_00222_9
crossref_primary_10_1109_ACCESS_2019_2958330
crossref_primary_10_3390_math10244725
crossref_primary_10_1016_j_neucom_2022_04_044
crossref_primary_10_1109_TIE_2019_2931220
crossref_primary_10_1109_TIM_2022_3173278
crossref_primary_10_1080_10589759_2024_2446641
crossref_primary_10_1109_TII_2019_2941868
crossref_primary_10_1109_TIM_2021_3117082
crossref_primary_10_1109_TIE_2021_3139202
crossref_primary_10_1016_j_ymssp_2023_110332
crossref_primary_10_1016_j_cirpj_2022_06_001
crossref_primary_10_1016_j_measurement_2023_113991
crossref_primary_10_1007_s00170_023_12259_3
crossref_primary_10_1007_s00170_024_13472_4
crossref_primary_10_1007_s12206_024_0632_9
crossref_primary_10_1016_j_engappai_2023_106546
crossref_primary_10_1007_s13369_025_10471_9
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_jmsy_2020_11_018
crossref_primary_10_1016_j_measurement_2023_112900
crossref_primary_10_1016_j_mfglet_2021_07_015
crossref_primary_10_1007_s42417_022_00702_w
crossref_primary_10_1016_j_measurement_2019_107132
crossref_primary_10_1007_s42417_022_00781_9
crossref_primary_10_1088_1361_6501_ab7282
crossref_primary_10_3390_math8112008
crossref_primary_10_3390_app13127226
crossref_primary_10_1007_s10845_020_01666_y
crossref_primary_10_1109_TCYB_2022_3178116
crossref_primary_10_3390_s22062206
crossref_primary_10_1088_1361_6501_abea3f
crossref_primary_10_1007_s00170_022_08861_6
crossref_primary_10_1016_j_compind_2022_103638
crossref_primary_10_1016_j_rcim_2021_102145
crossref_primary_10_1109_TII_2019_2949355
crossref_primary_10_1177_0954405421993694
crossref_primary_10_1016_j_jmsy_2022_05_018
crossref_primary_10_3390_jmmp2040072
crossref_primary_10_1007_s10845_023_02088_2
crossref_primary_10_1016_j_procir_2021_11_186
crossref_primary_10_32604_cmes_2023_025516
crossref_primary_10_1016_j_aei_2022_101850
crossref_primary_10_1007_s11431_023_2615_4
crossref_primary_10_1007_s00170_023_11302_7
crossref_primary_10_1109_ACCESS_2020_2978860
crossref_primary_10_3390_ma14216717
crossref_primary_10_1007_s00170_020_05548_8
crossref_primary_10_1109_TIE_2020_3038069
crossref_primary_10_1109_ACCESS_2019_2941287
crossref_primary_10_1016_j_ymssp_2023_110310
Cites_doi 10.1109/MFI.2015.7295820
10.1109/TPAMI.2013.50
10.1109/TEPM.2010.2052811
10.1109/TIM.2016.2584238
10.1109/TIM.2017.2759418
10.1016/j.ymssp.2006.07.016
10.1016/j.jsv.2016.05.027
10.1126/science.1127647
10.1109/TII.2012.2205583
10.1109/TIM.2013.2281576
10.1007/s00170-011-3504-2
10.1007/s00170-016-9735-5
10.1016/j.ymssp.2016.08.035
10.1109/TIE.2017.2733438
10.1109/ICARCV.2010.5707842
10.1016/j.ins.2013.06.010
10.1109/TIE.2017.2745473
10.1016/j.jprocont.2014.01.012
10.1109/JSYST.2015.2425793
10.1016/j.knosys.2016.12.012
10.1016/j.eswa.2010.12.095
10.1016/j.eswa.2013.12.026
10.1145/1553374.1553453
10.1109/TIE.2016.2519325
10.7551/mitpress/7503.003.0147
10.1016/B978-0-08-096532-1.01330-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2018.2856193
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 3803
ExternalDocumentID 10_1109_TIE_2018_2856193
8421243
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51705174; 51625502
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c206t-ea3c3622a80f243bd7140ea1bd5a74ab9facc596c3f5cc1663b656f5dbf0cf993
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:10:55 EDT 2025
Sat Nov 29 01:31:40 EST 2025
Tue Nov 18 22:27:56 EST 2025
Wed Aug 27 02:59:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-ea3c3622a80f243bd7140ea1bd5a74ab9facc596c3f5cc1663b656f5dbf0cf993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6530-5695
0000-0002-2249-8263
0000-0002-7395-8418
0000-0002-8722-8934
PQID 2162804788
PQPubID 85464
PageCount 10
ParticipantIDs proquest_journals_2162804788
ieee_primary_8421243
crossref_primary_10_1109_TIE_2018_2856193
crossref_citationtrail_10_1109_TIE_2018_2856193
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref2
patra (ref7) 2011; 3
ref1
jemielniak (ref30) 2012; 59
ref17
ref16
ref19
ref18
vincent (ref28) 2010; 11
ref24
ref23
li (ref3) 2017; 91
ref26
hinton (ref25) 2006; 313
ku (ref8) 2014; 12
ref20
ref22
ref21
qiu (ref12) 2014; 12
ref27
ref29
ref9
ref4
ref6
ref5
References_xml – ident: ref9
  doi: 10.1109/MFI.2015.7295820
– ident: ref19
  doi: 10.1109/TPAMI.2013.50
– ident: ref1
  doi: 10.1109/TEPM.2010.2052811
– ident: ref14
  doi: 10.1109/TIM.2016.2584238
– ident: ref27
  doi: 10.1109/TIM.2017.2759418
– ident: ref13
  doi: 10.1016/j.ymssp.2006.07.016
– ident: ref23
  doi: 10.1016/j.jsv.2016.05.027
– volume: 313
  start-page: 504
  year: 2006
  ident: ref25
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref6
  doi: 10.1109/TII.2012.2205583
– ident: ref5
  doi: 10.1109/TIM.2013.2281576
– volume: 59
  start-page: 73
  year: 2012
  ident: ref30
  article-title: Tool condition monitoring based on numerous signal features
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-011-3504-2
– volume: 12
  start-page: 40
  year: 2014
  ident: ref12
  article-title: Tool wear monitoring based on wavelet packet coefficient and hidden Markov model
  publication-title: Machine Tool & Hydraulics
– volume: 91
  start-page: 351
  year: 2017
  ident: ref3
  article-title: Force-based tool condition monitoring for turning process using v-support vector regression
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9735-5
– ident: ref16
  doi: 10.1016/j.ymssp.2016.08.035
– ident: ref15
  doi: 10.1109/TIE.2017.2733438
– volume: 3
  start-page: 2126
  year: 2011
  ident: ref7
  article-title: Acoustic emission based tool condition monitoring system in drilling
  publication-title: Lecture Notes Computational Sci Engrg
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref28
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 68
  year: 2014
  ident: ref8
  article-title: Recognition of tool wear state based on wavelet packet and BP neural network
  publication-title: Modern Manufature Engineering
– ident: ref10
  doi: 10.1109/ICARCV.2010.5707842
– ident: ref11
  doi: 10.1016/j.ins.2013.06.010
– ident: ref20
  doi: 10.1109/TIE.2017.2745473
– ident: ref17
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref2
  doi: 10.1109/JSYST.2015.2425793
– ident: ref21
  doi: 10.1016/j.knosys.2016.12.012
– ident: ref29
  doi: 10.1016/j.eswa.2010.12.095
– ident: ref22
  doi: 10.1016/j.eswa.2013.12.026
– ident: ref24
  doi: 10.1145/1553374.1553453
– ident: ref18
  doi: 10.1109/TIE.2016.2519325
– ident: ref26
  doi: 10.7551/mitpress/7503.003.0147
– ident: ref4
  doi: 10.1016/B978-0-08-096532-1.01330-3
SSID ssj0014515
Score 2.590518
Snippet Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3794
SubjectTerms Classification
Computer simulation
Deep learning
Deep learning (DL)
Feature extraction
feature fusion
feature spaces
Hidden Markov models
Machine learning
Machinery condition monitoring
Machining
Manufacturing
Manufacturing processes
tool condition monitoring (TCM)
Tool wear
ultraprecision manufacturing process
Title Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing
URI https://ieeexplore.ieee.org/document/8421243
https://www.proquest.com/docview/2162804788
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYNxu22STo0_0oAiu4K00LxGWdunu-vudpNlFUQRvpTRD6NdkvnRmvgE40U4ow5yjJuWM5opxKm3OKN5UijuLG6IIzSb6j4_i9VU-LcDZvBbGWhuSz-y5vwyxfFPrqf9V1hU-fJlni7DY7_O2VmseMchZ260g9YqxeOibhSQT2R3c3_gcLnGeCmQLMvvmgkJPlR8bcfAut-v_m9cGrEUWSS5a2DdhwVZbsPpFW3Ab6pAMQB5iwiD1XG_aWPo88klY9BK9lyHX1o5IlFh9I8hfyaCuh-Sq9oFsRIy0S95bJO8VeRlOmnLUxLY85KGspr4wIlQ67sDL7c3g6o7G7gpUpwmfUFtmGr1XWorE4eSV8dJ9tuwhSmU_L5VEA5pJrjPHtO4hM1HI_RwzyiXaIa3ZhaWqruweECaM5NboTCgkBIaLNCsTJpLMoOWeMB3ozl54oaP0uO-AMSzCESSRBUJUeIiKCFEHTucjRq3sxh_PbntI5s9FNDpwOMO0iOtyXKQ9ngovSCT2fx91ACtoW7YpjYewNGmm9giW9cfkfdwch0_uE09X1aw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4qF4ntYcDYtG5c_LAXpJmmTpzajxsXgaDVJIrEWxTfEFKVVKHl93PsuBUIhMRbFNmOlS_2-ZxzzncAfmsnlOHOUcNyTjPFcyptxineVCp3FjdEEYpNDEYjcXsr_3fgzzIXxlobgs_skb8MvnxT67n_VdYT3n2ZpSuwxrOMJW221tJnkPG2XgHzmrF47Fs4JRPZG1-c-iguccQE8gWZvjBCoarKq6042JezzY_NbAu-RB5J_rbAb0PHVl_h8zN1wR2oQzgAGcaQQerZ3ryx9Hrqw7DoP7RfhpxYOyVRZPWOIIMl47qekOPau7IRM9Iuej8iua_IzWTWlNMmFuYhw7Ka-9SIkOv4DW7OTsfH5zTWV6CaJfmM2jLVaL9YKRKHk1fGi_fZso84lYOsVBIH0FzmOnVc6z5yE4Xsz3GjXKIdEpvvsFrVlf0BhAsjc2t0KhRSApMLlpYJF0lqcOS-MF3oLV54oaP4uK-BMSnCISSRBUJUeIiKCFEXDpc9pq3wxjttdzwky3YRjS7sLjAt4sp8KFg_Z8JLEomfb_c6gI3z8fCquLoYXf6CT_gc2QY47sLqrJnbPVjXj7P7h2Y_fH5Pkx3Y8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Multiple-Feature-Spaces-Based+Deep+Learning+for+Tool+Condition+Monitoring+in+Ultraprecision+Manufacturing&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Shi%2C+Chengming&rft.au=Panoutsos%2C+George&rft.au=Luo%2C+Bo&rft.au=Liu%2C+Hongqi&rft.date=2019-05-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=5&rft.spage=3794&rft.epage=3803&rft_id=info:doi/10.1109%2FTIE.2018.2856193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2018_2856193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon