Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing
Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast pa...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 66; číslo 5; s. 3794 - 3803 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast part quality. In this paper, a novel deep learning data-driven modeling framework is presented, which includes a fusion of multiple stacked sparse autoencoders for tool condition monitoring in ultraprecision machining. The proposed computational framework consists of two main structures. First, a training model that is designed with the ability to process multiple parallel feature spaces to learn the lower-level features. Second, a feature fusion structure that is used to learn the higher-level features and associations to tool wear. To achieve this learning structure, a modified loss function is utilized that enhances the feature extraction and classification tasks. A dataset from a real manufacturing process is used to demonstrate the performance of the proposed framework. Experimental results and simulations show that the proposed method successfully classifies the ultraprecision machining case study with over 96% accuracy, while also outperforming comparable methodologies. |
|---|---|
| AbstractList | Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast part quality. In this paper, a novel deep learning data-driven modeling framework is presented, which includes a fusion of multiple stacked sparse autoencoders for tool condition monitoring in ultraprecision machining. The proposed computational framework consists of two main structures. First, a training model that is designed with the ability to process multiple parallel feature spaces to learn the lower-level features. Second, a feature fusion structure that is used to learn the higher-level features and associations to tool wear. To achieve this learning structure, a modified loss function is utilized that enhances the feature extraction and classification tasks. A dataset from a real manufacturing process is used to demonstrate the performance of the proposed framework. Experimental results and simulations show that the proposed method successfully classifies the ultraprecision machining case study with over 96% accuracy, while also outperforming comparable methodologies. |
| Author | Lin, Xu Li, Bin Luo, Bo Liu, Hongqi Shi, Chengming Panoutsos, George |
| Author_xml | – sequence: 1 givenname: Chengming orcidid: 0000-0002-6530-5695 surname: Shi fullname: Shi, Chengming email: 513864035@qq.com organization: Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: George orcidid: 0000-0002-7395-8418 surname: Panoutsos fullname: Panoutsos, George email: g.panoutsos@sheffield.ac.uk organization: Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom – sequence: 3 givenname: Bo orcidid: 0000-0002-2249-8263 surname: Luo fullname: Luo, Bo email: hglobo@163.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Hongqi surname: Liu fullname: Liu, Hongqi email: liuhongqi328@163.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Bin orcidid: 0000-0002-8722-8934 surname: Li fullname: Li, Bin email: li_bin_hust@163.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Xu surname: Lin fullname: Lin, Xu email: m201670426@hust.edu.cn organization: Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kD1PwzAQhi0EEm1hR2KJxJxiO7HjjFBaqNSKgXaOHOeMXAU72MnAv8ehFQMD0w3vl-6ZonPrLCB0Q_CcEFze79bLOcVEzKlgnJTZGZoQxoq0LHNxjiaYFiLFOOeXaBrCAWOSM8ImyO2Dse_Jdmh707WQrkD2g4f0rZMKQvooAzTJE0CXbEB6O3q188nOuTZZONuY3jibbJ01vfOjamyyb3svOw_KhB9R2kFLFWujfoUutGwDXJ_uDO1Xy93iJd28Pq8XD5tUUcz7FGSmMk6pFFjTPKubguQYJKkbJotc1mUsVKzkKtNMKcJ5VnPGNWtqjZUuy2yG7o69nXefA4S-OrjB2zhZUcKpwHkhRHTho0t5F4IHXXXefEj_VRFcjViriLUasVYnrDHC_0SU6eVIIT5t2v-Ct8egAYDfHZFTEh_MvgFMB4iv |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_rcim_2025_102962 crossref_primary_10_1016_j_simpat_2019_101981 crossref_primary_10_3390_e25020242 crossref_primary_10_1016_j_precisioneng_2022_11_014 crossref_primary_10_1177_09544054231202889 crossref_primary_10_1088_1361_6501_acf594 crossref_primary_10_1007_s00170_024_14273_5 crossref_primary_10_1016_j_cirp_2019_03_010 crossref_primary_10_1109_ACCESS_2020_3042874 crossref_primary_10_1109_ACCESS_2020_3047205 crossref_primary_10_1109_TIE_2021_3102443 crossref_primary_10_1109_TIM_2021_3077995 crossref_primary_10_1007_s10845_022_02044_6 crossref_primary_10_1016_j_neucom_2020_04_073 crossref_primary_10_1016_j_measurement_2022_111716 crossref_primary_10_1016_j_ymssp_2023_110644 crossref_primary_10_1007_s11740_024_01319_6 crossref_primary_10_1007_s40684_024_00679_9 crossref_primary_10_1016_j_jmapro_2024_07_002 crossref_primary_10_1016_j_jmsy_2023_06_010 crossref_primary_10_1016_j_matpr_2020_11_351 crossref_primary_10_3390_e24121733 crossref_primary_10_1016_j_measurement_2021_108973 crossref_primary_10_1109_TII_2024_3476547 crossref_primary_10_1016_j_jmsy_2024_03_008 crossref_primary_10_1109_MIE_2020_3023075 crossref_primary_10_1007_s12008_025_02387_3 crossref_primary_10_1016_j_ijmecsci_2020_106111 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1016_j_measurement_2023_114076 crossref_primary_10_1016_j_ifacol_2019_09_142 crossref_primary_10_1016_j_jmsy_2024_05_017 crossref_primary_10_1016_j_eswa_2023_121076 crossref_primary_10_3390_s23031240 crossref_primary_10_1016_j_eswa_2024_124376 crossref_primary_10_1016_j_cie_2023_109359 crossref_primary_10_1109_TIM_2025_3600723 crossref_primary_10_1016_j_precisioneng_2020_11_001 crossref_primary_10_3390_app10113755 crossref_primary_10_1007_s00170_021_07325_7 crossref_primary_10_1007_s00170_022_09762_4 crossref_primary_10_1080_0951192X_2023_2228271 crossref_primary_10_1177_15501329221102077 crossref_primary_10_1007_s12541_020_00388_8 crossref_primary_10_3390_machines9120369 crossref_primary_10_1007_s40857_021_00222_9 crossref_primary_10_1109_ACCESS_2019_2958330 crossref_primary_10_3390_math10244725 crossref_primary_10_1016_j_neucom_2022_04_044 crossref_primary_10_1109_TIE_2019_2931220 crossref_primary_10_1109_TIM_2022_3173278 crossref_primary_10_1080_10589759_2024_2446641 crossref_primary_10_1109_TII_2019_2941868 crossref_primary_10_1109_TIM_2021_3117082 crossref_primary_10_1109_TIE_2021_3139202 crossref_primary_10_1016_j_ymssp_2023_110332 crossref_primary_10_1016_j_cirpj_2022_06_001 crossref_primary_10_1016_j_measurement_2023_113991 crossref_primary_10_1007_s00170_023_12259_3 crossref_primary_10_1007_s00170_024_13472_4 crossref_primary_10_1007_s12206_024_0632_9 crossref_primary_10_1016_j_engappai_2023_106546 crossref_primary_10_1007_s13369_025_10471_9 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_1016_j_jmsy_2020_11_018 crossref_primary_10_1016_j_measurement_2023_112900 crossref_primary_10_1016_j_mfglet_2021_07_015 crossref_primary_10_1007_s42417_022_00702_w crossref_primary_10_1016_j_measurement_2019_107132 crossref_primary_10_1007_s42417_022_00781_9 crossref_primary_10_1088_1361_6501_ab7282 crossref_primary_10_3390_math8112008 crossref_primary_10_3390_app13127226 crossref_primary_10_1007_s10845_020_01666_y crossref_primary_10_1109_TCYB_2022_3178116 crossref_primary_10_3390_s22062206 crossref_primary_10_1088_1361_6501_abea3f crossref_primary_10_1007_s00170_022_08861_6 crossref_primary_10_1016_j_compind_2022_103638 crossref_primary_10_1016_j_rcim_2021_102145 crossref_primary_10_1109_TII_2019_2949355 crossref_primary_10_1177_0954405421993694 crossref_primary_10_1016_j_jmsy_2022_05_018 crossref_primary_10_3390_jmmp2040072 crossref_primary_10_1007_s10845_023_02088_2 crossref_primary_10_1016_j_procir_2021_11_186 crossref_primary_10_32604_cmes_2023_025516 crossref_primary_10_1016_j_aei_2022_101850 crossref_primary_10_1007_s11431_023_2615_4 crossref_primary_10_1007_s00170_023_11302_7 crossref_primary_10_1109_ACCESS_2020_2978860 crossref_primary_10_3390_ma14216717 crossref_primary_10_1007_s00170_020_05548_8 crossref_primary_10_1109_TIE_2020_3038069 crossref_primary_10_1109_ACCESS_2019_2941287 crossref_primary_10_1016_j_ymssp_2023_110310 |
| Cites_doi | 10.1109/MFI.2015.7295820 10.1109/TPAMI.2013.50 10.1109/TEPM.2010.2052811 10.1109/TIM.2016.2584238 10.1109/TIM.2017.2759418 10.1016/j.ymssp.2006.07.016 10.1016/j.jsv.2016.05.027 10.1126/science.1127647 10.1109/TII.2012.2205583 10.1109/TIM.2013.2281576 10.1007/s00170-011-3504-2 10.1007/s00170-016-9735-5 10.1016/j.ymssp.2016.08.035 10.1109/TIE.2017.2733438 10.1109/ICARCV.2010.5707842 10.1016/j.ins.2013.06.010 10.1109/TIE.2017.2745473 10.1016/j.jprocont.2014.01.012 10.1109/JSYST.2015.2425793 10.1016/j.knosys.2016.12.012 10.1016/j.eswa.2010.12.095 10.1016/j.eswa.2013.12.026 10.1145/1553374.1553453 10.1109/TIE.2016.2519325 10.7551/mitpress/7503.003.0147 10.1016/B978-0-08-096532-1.01330-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2018.2856193 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 3803 |
| ExternalDocumentID | 10_1109_TIE_2018_2856193 8421243 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51705174; 51625502 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c206t-ea3c3622a80f243bd7140ea1bd5a74ab9facc596c3f5cc1663b656f5dbf0cf993 |
| IEDL.DBID | RIE |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:10:55 EDT 2025 Sat Nov 29 01:31:40 EST 2025 Tue Nov 18 22:27:56 EST 2025 Wed Aug 27 02:59:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c206t-ea3c3622a80f243bd7140ea1bd5a74ab9facc596c3f5cc1663b656f5dbf0cf993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6530-5695 0000-0002-2249-8263 0000-0002-7395-8418 0000-0002-8722-8934 |
| PQID | 2162804788 |
| PQPubID | 85464 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2162804788 ieee_primary_8421243 crossref_primary_10_1109_TIE_2018_2856193 crossref_citationtrail_10_1109_TIE_2018_2856193 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref2 patra (ref7) 2011; 3 ref1 jemielniak (ref30) 2012; 59 ref17 ref16 ref19 ref18 vincent (ref28) 2010; 11 ref24 ref23 li (ref3) 2017; 91 ref26 hinton (ref25) 2006; 313 ku (ref8) 2014; 12 ref20 ref22 ref21 qiu (ref12) 2014; 12 ref27 ref29 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/MFI.2015.7295820 – ident: ref19 doi: 10.1109/TPAMI.2013.50 – ident: ref1 doi: 10.1109/TEPM.2010.2052811 – ident: ref14 doi: 10.1109/TIM.2016.2584238 – ident: ref27 doi: 10.1109/TIM.2017.2759418 – ident: ref13 doi: 10.1016/j.ymssp.2006.07.016 – ident: ref23 doi: 10.1016/j.jsv.2016.05.027 – volume: 313 start-page: 504 year: 2006 ident: ref25 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref6 doi: 10.1109/TII.2012.2205583 – ident: ref5 doi: 10.1109/TIM.2013.2281576 – volume: 59 start-page: 73 year: 2012 ident: ref30 article-title: Tool condition monitoring based on numerous signal features publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-011-3504-2 – volume: 12 start-page: 40 year: 2014 ident: ref12 article-title: Tool wear monitoring based on wavelet packet coefficient and hidden Markov model publication-title: Machine Tool & Hydraulics – volume: 91 start-page: 351 year: 2017 ident: ref3 article-title: Force-based tool condition monitoring for turning process using v-support vector regression publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9735-5 – ident: ref16 doi: 10.1016/j.ymssp.2016.08.035 – ident: ref15 doi: 10.1109/TIE.2017.2733438 – volume: 3 start-page: 2126 year: 2011 ident: ref7 article-title: Acoustic emission based tool condition monitoring system in drilling publication-title: Lecture Notes Computational Sci Engrg – volume: 11 start-page: 3371 year: 2010 ident: ref28 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 12 start-page: 68 year: 2014 ident: ref8 article-title: Recognition of tool wear state based on wavelet packet and BP neural network publication-title: Modern Manufature Engineering – ident: ref10 doi: 10.1109/ICARCV.2010.5707842 – ident: ref11 doi: 10.1016/j.ins.2013.06.010 – ident: ref20 doi: 10.1109/TIE.2017.2745473 – ident: ref17 doi: 10.1016/j.jprocont.2014.01.012 – ident: ref2 doi: 10.1109/JSYST.2015.2425793 – ident: ref21 doi: 10.1016/j.knosys.2016.12.012 – ident: ref29 doi: 10.1016/j.eswa.2010.12.095 – ident: ref22 doi: 10.1016/j.eswa.2013.12.026 – ident: ref24 doi: 10.1145/1553374.1553453 – ident: ref18 doi: 10.1109/TIE.2016.2519325 – ident: ref26 doi: 10.7551/mitpress/7503.003.0147 – ident: ref4 doi: 10.1016/B978-0-08-096532-1.01330-3 |
| SSID | ssj0014515 |
| Score | 2.590518 |
| Snippet | Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3794 |
| SubjectTerms | Classification Computer simulation Deep learning Deep learning (DL) Feature extraction feature fusion feature spaces Hidden Markov models Machine learning Machinery condition monitoring Machining Manufacturing Manufacturing processes tool condition monitoring (TCM) Tool wear ultraprecision manufacturing process |
| Title | Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing |
| URI | https://ieeexplore.ieee.org/document/8421243 https://www.proquest.com/docview/2162804788 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYNxu22STo0_0oAiu4K00LxGWdunu-vudpNlFUQRvpTRD6NdkvnRmvgE40U4ow5yjJuWM5opxKm3OKN5UijuLG6IIzSb6j4_i9VU-LcDZvBbGWhuSz-y5vwyxfFPrqf9V1hU-fJlni7DY7_O2VmseMchZ260g9YqxeOibhSQT2R3c3_gcLnGeCmQLMvvmgkJPlR8bcfAut-v_m9cGrEUWSS5a2DdhwVZbsPpFW3Ab6pAMQB5iwiD1XG_aWPo88klY9BK9lyHX1o5IlFh9I8hfyaCuh-Sq9oFsRIy0S95bJO8VeRlOmnLUxLY85KGspr4wIlQ67sDL7c3g6o7G7gpUpwmfUFtmGr1XWorE4eSV8dJ9tuwhSmU_L5VEA5pJrjPHtO4hM1HI_RwzyiXaIa3ZhaWqruweECaM5NboTCgkBIaLNCsTJpLMoOWeMB3ozl54oaP0uO-AMSzCESSRBUJUeIiKCFEHTucjRq3sxh_PbntI5s9FNDpwOMO0iOtyXKQ9ngovSCT2fx91ACtoW7YpjYewNGmm9giW9cfkfdwch0_uE09X1aw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4qF4ntYcDYtG5c_LAXpJmmTpzajxsXgaDVJIrEWxTfEFKVVKHl93PsuBUIhMRbFNmOlS_2-ZxzzncAfmsnlOHOUcNyTjPFcyptxineVCp3FjdEEYpNDEYjcXsr_3fgzzIXxlobgs_skb8MvnxT67n_VdYT3n2ZpSuwxrOMJW221tJnkPG2XgHzmrF47Fs4JRPZG1-c-iguccQE8gWZvjBCoarKq6042JezzY_NbAu-RB5J_rbAb0PHVl_h8zN1wR2oQzgAGcaQQerZ3ryx9Hrqw7DoP7RfhpxYOyVRZPWOIIMl47qekOPau7IRM9Iuej8iua_IzWTWlNMmFuYhw7Ka-9SIkOv4DW7OTsfH5zTWV6CaJfmM2jLVaL9YKRKHk1fGi_fZso84lYOsVBIH0FzmOnVc6z5yE4Xsz3GjXKIdEpvvsFrVlf0BhAsjc2t0KhRSApMLlpYJF0lqcOS-MF3oLV54oaP4uK-BMSnCISSRBUJUeIiKCFEXDpc9pq3wxjttdzwky3YRjS7sLjAt4sp8KFg_Z8JLEomfb_c6gI3z8fCquLoYXf6CT_gc2QY47sLqrJnbPVjXj7P7h2Y_fH5Pkx3Y8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Multiple-Feature-Spaces-Based+Deep+Learning+for+Tool+Condition+Monitoring+in+Ultraprecision+Manufacturing&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Shi%2C+Chengming&rft.au=Panoutsos%2C+George&rft.au=Luo%2C+Bo&rft.au=Liu%2C+Hongqi&rft.date=2019-05-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=5&rft.spage=3794&rft.epage=3803&rft_id=info:doi/10.1109%2FTIE.2018.2856193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2018_2856193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |