ORKM: An R package for online multi-view data clustering
We propose a package called ORKM, which implements the ORKMC (Online Regularized K-Means Clustering) method for handling online multi-view or single-view data, which named ORKMeans function in the package incorporates a regularization term to address multi-view clustering problems with online update...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 663; s. 131973 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
28.01.2026
Elsevier |
| Témata: | |
| ISSN: | 0925-2312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a package called ORKM, which implements the ORKMC (Online Regularized K-Means Clustering) method for handling online multi-view or single-view data, which named ORKMeans function in the package incorporates a regularization term to address multi-view clustering problems with online updates. ORKM computes classification results, cluster center matrices, and view-specific weights for multi-view datasets. It also supports branching multi/single-view data by converting the online RKMC algorithm into an offline version, referred to as RKMC (Regularized K-Means Clustering) realized by function RKMeans. We demonstrate the package’s functionality through simulations and real-world data analyses, comparing it with other methods and related R packages. Overall, ORKM exhibits stable performance and effective clustering results. |
|---|---|
| ISSN: | 0925-2312 |
| DOI: | 10.1016/j.neucom.2025.131973 |