Co-Design for Overlaid MIMO Radar and Downlink MISO Communication Systems via Cramér-Rao Bound Minimization

This paper considers the problem of co-existence of collocated multiple-input multiple-output (MIMO) radar and downlink multiple-input single-output (MISO) communication systems, which share the same frequency band. As the interference caused by the communication systems would degrade the accuracy o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 67; číslo 24; s. 6227 - 6240
Hlavní autoři: Cheng, Ziyang, Liao, Bin, Shi, Shengnan, He, Zishu, Li, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers the problem of co-existence of collocated multiple-input multiple-output (MIMO) radar and downlink multiple-input single-output (MISO) communication systems, which share the same frequency band. As the interference caused by the communication systems would degrade the accuracy of radar target localization, we formulate the co-design of radar waveform and communication transmit weights by minimizing the Cramér-Rao Bound (CRB) of direction-of-arrival (DOA) estimation, subject to a set of constraints accounting for the worst-case signal-to-noise-plus-interference ratio (SINR), similarity and energy. However, the objective is nonconvex and all variables are coupled together in the SINR constraints, the formulated problem is thus NP-hard. Towards that end, a decentralized block successive upper-bound minimization (D-BSUM) method based on the decomposition theory is developed. More specifically, at each iteration of this algorithm, the radar waveform is obtained with the aid of the alternating direction method of multipliers (ADMM) algorithm, and communication weights are obtained by exploiting the semidefinite programs (SDP). It is also proved that the proposed SDP-based method gives a rank-one solution. Numerical simulations are conducted to evaluate the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2952048