Fair machine learning through constrained stochastic optimization and an ϵ-constraint method
A strategy for fair supervised learning is proposed. It involves formulating an optimization problem to minimize loss subject to a prescribed bound on a measure of unfairness (e.g., disparate impact). It can be embedded within an ϵ -constraint method for multiobjective optimization, allowing one to...
Saved in:
| Published in: | Optimization letters Vol. 18; no. 9; pp. 1975 - 1991 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
|
| Subjects: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!