Fair machine learning through constrained stochastic optimization and an ϵ-constraint method
A strategy for fair supervised learning is proposed. It involves formulating an optimization problem to minimize loss subject to a prescribed bound on a measure of unfairness (e.g., disparate impact). It can be embedded within an ϵ -constraint method for multiobjective optimization, allowing one to...
Gespeichert in:
| Veröffentlicht in: | Optimization letters Jg. 18; H. 9; S. 1975 - 1991 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
|
| Schlagworte: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!