Spectral-diagonalization-based matrix exponential integration for efficient and stable solutions of full-Bloch equations in surface NMR

Surface nuclear magnetic resonance (SNMR) is a geophysical extension of nuclear magnetic resonance (NMR) that enables non-invasive mapping of subsurface hydrogeological properties by measuring the relaxation response of groundwater hydrogen nuclei. Accurately modeling the transient spin dynamics in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences Jg. 207; S. 106073
Hauptverfasser: Lin, Tingting, Wang, Qingyue, Jiang, Chuandong, Ren, Chunpeng, Wang, Yunzhi, Wang, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2026
Schlagworte:
ISSN:0098-3004
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Surface nuclear magnetic resonance (SNMR) is a geophysical extension of nuclear magnetic resonance (NMR) that enables non-invasive mapping of subsurface hydrogeological properties by measuring the relaxation response of groundwater hydrogen nuclei. Accurately modeling the transient spin dynamics in SNMR requires solving the full-Bloch equations under Earth’s geomagnetic field, where magnetic field inhomogeneities, multicomponent relaxation, and nonlinear pulsed excitations introduce significant mathematical and computational challenges. We present a spectral-diagonalization-based matrix exponential integration (SD-MEI) algorithm for efficient and stable solutions of full-Bloch equations in SNMR. Conventional explicit numerical methods exhibit cumulative discretization errors and escalating computational costs due to step-size dependence and finite precision limitations. SD-MEI integrates spectral diagonalization with matrix exponential operations, replacing iterative computations with a single eigendecomposition of the system matrix. This approach achieves parameter-robust computational complexity while maintaining numerical stability across broad B1 field strengths (10−10 T to 10−5 T) and relaxation times (10 ms to 1000 ms). Validated for steady-state free precession (SSFP) dynamics in heterogeneous geomagnetic environments, the method enables high-accuracy modeling of transient magnetization evolution with large time steps. The framework advances SNMR efficient forward modeling and inversion while optimizing protocols by resolving critical limitations in existing numerical and analytical approaches. •Modeling of Magnetization Dynamics: Accurately describes magnetization vectors over broad excitation fields.•Control of Computational Complexity: Keeps computation stable, improving efficiency by 20–1000x.•Improved Numerical Stability: Solves convergence issues in stiff and highly nonlinear systems.•Temporal Flexibility: Computes magnetization at any time without affecting overall accuracy.
AbstractList Surface nuclear magnetic resonance (SNMR) is a geophysical extension of nuclear magnetic resonance (NMR) that enables non-invasive mapping of subsurface hydrogeological properties by measuring the relaxation response of groundwater hydrogen nuclei. Accurately modeling the transient spin dynamics in SNMR requires solving the full-Bloch equations under Earth’s geomagnetic field, where magnetic field inhomogeneities, multicomponent relaxation, and nonlinear pulsed excitations introduce significant mathematical and computational challenges. We present a spectral-diagonalization-based matrix exponential integration (SD-MEI) algorithm for efficient and stable solutions of full-Bloch equations in SNMR. Conventional explicit numerical methods exhibit cumulative discretization errors and escalating computational costs due to step-size dependence and finite precision limitations. SD-MEI integrates spectral diagonalization with matrix exponential operations, replacing iterative computations with a single eigendecomposition of the system matrix. This approach achieves parameter-robust computational complexity while maintaining numerical stability across broad B1 field strengths (10−10 T to 10−5 T) and relaxation times (10 ms to 1000 ms). Validated for steady-state free precession (SSFP) dynamics in heterogeneous geomagnetic environments, the method enables high-accuracy modeling of transient magnetization evolution with large time steps. The framework advances SNMR efficient forward modeling and inversion while optimizing protocols by resolving critical limitations in existing numerical and analytical approaches. •Modeling of Magnetization Dynamics: Accurately describes magnetization vectors over broad excitation fields.•Control of Computational Complexity: Keeps computation stable, improving efficiency by 20–1000x.•Improved Numerical Stability: Solves convergence issues in stiff and highly nonlinear systems.•Temporal Flexibility: Computes magnetization at any time without affecting overall accuracy.
ArticleNumber 106073
Author Ren, Chunpeng
Wang, Qingyue
Wang, Liang
Lin, Tingting
Wang, Yunzhi
Jiang, Chuandong
Author_xml – sequence: 1
  givenname: Tingting
  orcidid: 0000-0002-6061-2311
  surname: Lin
  fullname: Lin, Tingting
  organization: State Key Laboratory of Deep Earth Exploration and Imaging, College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130026, China
– sequence: 2
  givenname: Qingyue
  orcidid: 0000-0003-3057-5094
  surname: Wang
  fullname: Wang, Qingyue
  organization: State Key Laboratory of Deep Earth Exploration and Imaging, College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130026, China
– sequence: 3
  givenname: Chuandong
  orcidid: 0000-0001-5373-6132
  surname: Jiang
  fullname: Jiang, Chuandong
  email: jiangchuandong@jlu.edu.cn
  organization: State Key Laboratory of Deep Earth Exploration and Imaging, College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130026, China
– sequence: 4
  givenname: Chunpeng
  orcidid: 0009-0007-2411-1759
  surname: Ren
  fullname: Ren, Chunpeng
  organization: State Key Laboratory of Deep Earth Exploration and Imaging, College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130026, China
– sequence: 5
  givenname: Yunzhi
  orcidid: 0000-0003-3301-1921
  surname: Wang
  fullname: Wang, Yunzhi
  organization: State Key Laboratory of Deep Earth Exploration and Imaging, College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130026, China
– sequence: 6
  givenname: Liang
  orcidid: 0000-0002-7236-786X
  surname: Wang
  fullname: Wang, Liang
  email: wangliang1985@jlu.edu.cn
  organization: School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
BookMark eNp9kMtOwzAQRb0oEm3hC9j4B1IcJ06TBQuoeEkFJB5ra2KPiys3LnaCCj_Ab5O0rFmNdOfeeZwJGTW-QULOUjZLWVqcr2cKVuhnnHHRKwWbZyMyZqwqk4yx_JhMYlwzxjgvxZj8vGxRtQFcoi2sfAPOfkNrfZPUEFHTDbTB7ijutv2WprXgqG1aXIW9iRofKBpjle2bFBpNYwu1Qxq96wZHpN5Q0zmXXDmv3il-dHDQbUNjFwwopI8PzyfkyICLePpXp-Tt5vp1cZcsn27vF5fLRHFW8CSrFdSsUqwGrdOc5bkwppyLCtW8zLBEYSqheSVyIyAzvOainivDQem8NqrIpiQ7zFXBxxjQyG2wGwhfMmVy4CfXcs9PDvzkgV-fujiksD_t02KQcfhYobahxye1t__mfwE1PIJJ
Cites_doi 10.1016/j.mri.2010.07.003
10.1103/PhysRevE.62.1290
10.1103/PhysRev.70.460
10.1190/1.3258342
10.1109/TGRS.2007.903829
10.1007/BF03166553
10.1016/j.jappgeo.2008.05.002
10.1190/geo2013-0452.1
10.1093/gji/ggab321
10.1016/j.jmr.2010.07.012
10.3997/1873-0604.2005013
10.1029/2021GL095381
10.1016/j.pnmrs.2008.01.002
10.1016/j.cageo.2024.105705
10.1119/1.4878621
10.1002/(SICI)1099-0534(1997)9:1<1::AID-CMR1>3.0.CO;2-2
10.1007/s10712-014-9304-0
10.1109/TGRS.2022.3221624
10.1103/PhysRev.69.37
10.3390/app10082850
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cageo.2025.106073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_cageo_2025_106073
S0098300425002237
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c2062-3bcab09c0badd140445ff8759ec783e8e5f95d2954f5a3f2b25b7cf2acd4bfc63
ISSN 0098-3004
IngestDate Thu Nov 27 00:50:11 EST 2025
Sat Nov 29 17:08:45 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Spectral diagonalization
Bloch equations
Matrix exponential integration
SNMR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2062-3bcab09c0badd140445ff8759ec783e8e5f95d2954f5a3f2b25b7cf2acd4bfc63
ORCID 0000-0001-5373-6132
0009-0007-2411-1759
0000-0002-7236-786X
0000-0002-6061-2311
0000-0003-3301-1921
0000-0003-3057-5094
ParticipantIDs crossref_primary_10_1016_j_cageo_2025_106073
elsevier_sciencedirect_doi_10_1016_j_cageo_2025_106073
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hertrich (b10) 2008; 53
Grombacher, Liu, Griffiths, Vang, Larsen (b8) 2021; 48
Bain, Anand, Nie (b1) 2010; 206
Behroozmand, Keating, Auken (b2) 2015; 36
Frimmer, Novotny (b4) 2014; 82
Madhu, Kumar (b15) 1997; 9
Girard, Legchenko, Boucher (b5) 2005; 3
Bloch (b3) 1946; 70
Hertrich, Braun, Gunther, Green, Yaramanci (b11) 2007; 45
Purcell, Torrey, Pound (b19) 1946; 69
Griffiths, Grombacher, Larsen (b6) 2021; 227
Griffiths, Grombacher, Liu, Vang, Larsen (b7) 2022; 60
Legchenko (b14) 2004; 25
Mohnke, Yaramanci (b17) 2008; 66
Murase, Tanki (b18) 2011; 29
Singh, Srivastava (b20) 2020; 10
Weichman, Lavely, Ritzwoller (b21) 2000; 62
Johnston (b13) 2020; 2020
Hertrich, Green, Braun, Yaramanci (b12) 2009; 74
Miao, Wang, Wang, Zheng, He, Ren, Jiang (b16) 2024; 192
Grombacher, Walbrecker, Knight (b9) 2014; 79
Grombacher (10.1016/j.cageo.2025.106073_b9) 2014; 79
Hertrich (10.1016/j.cageo.2025.106073_b10) 2008; 53
Mohnke (10.1016/j.cageo.2025.106073_b17) 2008; 66
Legchenko (10.1016/j.cageo.2025.106073_b14) 2004; 25
Bloch (10.1016/j.cageo.2025.106073_b3) 1946; 70
Frimmer (10.1016/j.cageo.2025.106073_b4) 2014; 82
Miao (10.1016/j.cageo.2025.106073_b16) 2024; 192
Griffiths (10.1016/j.cageo.2025.106073_b7) 2022; 60
Purcell (10.1016/j.cageo.2025.106073_b19) 1946; 69
Bain (10.1016/j.cageo.2025.106073_b1) 2010; 206
Griffiths (10.1016/j.cageo.2025.106073_b6) 2021; 227
Hertrich (10.1016/j.cageo.2025.106073_b11) 2007; 45
Hertrich (10.1016/j.cageo.2025.106073_b12) 2009; 74
Behroozmand (10.1016/j.cageo.2025.106073_b2) 2015; 36
Girard (10.1016/j.cageo.2025.106073_b5) 2005; 3
Weichman (10.1016/j.cageo.2025.106073_b21) 2000; 62
Grombacher (10.1016/j.cageo.2025.106073_b8) 2021; 48
Singh (10.1016/j.cageo.2025.106073_b20) 2020; 10
Murase (10.1016/j.cageo.2025.106073_b18) 2011; 29
Madhu (10.1016/j.cageo.2025.106073_b15) 1997; 9
Johnston (10.1016/j.cageo.2025.106073_b13) 2020; 2020
References_xml – volume: 25
  start-page: 621
  year: 2004
  end-page: 636
  ident: b14
  article-title: Magnetic resonance sounding: Enhanced modeling of a phase shift
  publication-title: Appl. Magn. Reson.
– volume: 62
  start-page: 1290
  year: 2000
  ident: b21
  article-title: Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems
  publication-title: Phys. Rev. E
– volume: 70
  start-page: 460
  year: 1946
  ident: b3
  article-title: Nuclear induction
  publication-title: Phys. Rev.
– volume: 9
  start-page: 1
  year: 1997
  end-page: 12
  ident: b15
  article-title: Bloch equations revisited: New analytical solutions for the generalized Bloch equations
  publication-title: Concepts Magn. Reson.: An Educ. J.
– volume: 192
  year: 2024
  ident: b16
  article-title: Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method
  publication-title: Comput. Geosci.
– volume: 206
  start-page: 227
  year: 2010
  end-page: 240
  ident: b1
  article-title: Exact solution to the Bloch equations and application to the Hahn echo
  publication-title: J. Magn. Reson.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 10
  ident: b7
  article-title: Forward modeling steady-state free precession in surface NMR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 36
  start-page: 27
  year: 2015
  end-page: 85
  ident: b2
  article-title: A review of the principles and applications of the NMR technique for near-surface characterization
  publication-title: Surv. Geophys.
– volume: 82
  start-page: 947
  year: 2014
  end-page: 954
  ident: b4
  article-title: The classical Bloch equations
  publication-title: Am. J. Phys.
– volume: 2020
  year: 2020
  ident: b13
  article-title: Solution of the Bloch equations including relaxation
  publication-title: Concepts Magn. Reson. Part A
– volume: 29
  start-page: 126
  year: 2011
  end-page: 131
  ident: b18
  article-title: Numerical solutions to the time-dependent Bloch equations revisited
  publication-title: Magn. Reson. Imaging
– volume: 66
  start-page: 73
  year: 2008
  end-page: 81
  ident: b17
  article-title: Pore size distributions and hydraulic conductivities of rocks derived from magnetic resonance sounding relaxation data using multi-exponential decay time inversion
  publication-title: J. Appl. Geophys.
– volume: 227
  start-page: 1905
  year: 2021
  end-page: 1916
  ident: b6
  article-title: Efficient numerical Bloch solutions for multipulse surface NMR
  publication-title: Geophys. J. Int.
– volume: 3
  start-page: 187
  year: 2005
  end-page: 194
  ident: b5
  article-title: Stability of MRS signal and estimation of data quality
  publication-title: Near Surf. Geophys.
– volume: 79
  start-page: E329
  year: 2014
  end-page: E339
  ident: b9
  article-title: Imparting a phase during excitation for improved resolution in surface nuclear magnetic resonance
  publication-title: Geophysics
– volume: 74
  start-page: G47
  year: 2009
  end-page: G59
  ident: b12
  article-title: High-resolution surface NMR tomography of shallow aquifers based on multioffset measurements
  publication-title: Geophysics
– volume: 48
  year: 2021
  ident: b8
  article-title: Steady-state surface NMR for mapping of groundwater
  publication-title: Geophys. Res. Lett.
– volume: 53
  start-page: 227
  year: 2008
  end-page: 248
  ident: b10
  article-title: Imaging of groundwater with nuclear magnetic resonance
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 45
  start-page: 3752
  year: 2007
  end-page: 3759
  ident: b11
  article-title: Surface nuclear magnetic resonance tomography
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 69
  start-page: 37
  year: 1946
  ident: b19
  article-title: Resonance absorption by nuclear magnetic moments in a solid
  publication-title: Phys. Rev.
– volume: 10
  start-page: 2850
  year: 2020
  ident: b20
  article-title: Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by using the Jacobi polynomials
  publication-title: Appl. Sci.
– volume: 2020
  issue: 1
  year: 2020
  ident: 10.1016/j.cageo.2025.106073_b13
  article-title: Solution of the Bloch equations including relaxation
  publication-title: Concepts Magn. Reson. Part A
– volume: 29
  start-page: 126
  issue: 1
  year: 2011
  ident: 10.1016/j.cageo.2025.106073_b18
  article-title: Numerical solutions to the time-dependent Bloch equations revisited
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.07.003
– volume: 62
  start-page: 1290
  issue: 1
  year: 2000
  ident: 10.1016/j.cageo.2025.106073_b21
  article-title: Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1290
– volume: 70
  start-page: 460
  issue: 7–8
  year: 1946
  ident: 10.1016/j.cageo.2025.106073_b3
  article-title: Nuclear induction
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.70.460
– volume: 74
  start-page: G47
  issue: 6
  year: 2009
  ident: 10.1016/j.cageo.2025.106073_b12
  article-title: High-resolution surface NMR tomography of shallow aquifers based on multioffset measurements
  publication-title: Geophysics
  doi: 10.1190/1.3258342
– volume: 45
  start-page: 3752
  issue: 11
  year: 2007
  ident: 10.1016/j.cageo.2025.106073_b11
  article-title: Surface nuclear magnetic resonance tomography
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.903829
– volume: 25
  start-page: 621
  issue: 3
  year: 2004
  ident: 10.1016/j.cageo.2025.106073_b14
  article-title: Magnetic resonance sounding: Enhanced modeling of a phase shift
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/BF03166553
– volume: 66
  start-page: 73
  issue: 3–4
  year: 2008
  ident: 10.1016/j.cageo.2025.106073_b17
  article-title: Pore size distributions and hydraulic conductivities of rocks derived from magnetic resonance sounding relaxation data using multi-exponential decay time inversion
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2008.05.002
– volume: 79
  start-page: E329
  issue: 6
  year: 2014
  ident: 10.1016/j.cageo.2025.106073_b9
  article-title: Imparting a phase during excitation for improved resolution in surface nuclear magnetic resonance
  publication-title: Geophysics
  doi: 10.1190/geo2013-0452.1
– volume: 227
  start-page: 1905
  issue: 3
  year: 2021
  ident: 10.1016/j.cageo.2025.106073_b6
  article-title: Efficient numerical Bloch solutions for multipulse surface NMR
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggab321
– volume: 206
  start-page: 227
  issue: 2
  year: 2010
  ident: 10.1016/j.cageo.2025.106073_b1
  article-title: Exact solution to the Bloch equations and application to the Hahn echo
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2010.07.012
– volume: 3
  start-page: 187
  issue: 3
  year: 2005
  ident: 10.1016/j.cageo.2025.106073_b5
  article-title: Stability of MRS signal and estimation of data quality
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2005013
– volume: 48
  issue: 23
  year: 2021
  ident: 10.1016/j.cageo.2025.106073_b8
  article-title: Steady-state surface NMR for mapping of groundwater
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL095381
– volume: 53
  start-page: 227
  issue: 4
  year: 2008
  ident: 10.1016/j.cageo.2025.106073_b10
  article-title: Imaging of groundwater with nuclear magnetic resonance
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2008.01.002
– volume: 192
  year: 2024
  ident: 10.1016/j.cageo.2025.106073_b16
  article-title: Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2024.105705
– volume: 82
  start-page: 947
  issue: 10
  year: 2014
  ident: 10.1016/j.cageo.2025.106073_b4
  article-title: The classical Bloch equations
  publication-title: Am. J. Phys.
  doi: 10.1119/1.4878621
– volume: 9
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.cageo.2025.106073_b15
  article-title: Bloch equations revisited: New analytical solutions for the generalized Bloch equations
  publication-title: Concepts Magn. Reson.: An Educ. J.
  doi: 10.1002/(SICI)1099-0534(1997)9:1<1::AID-CMR1>3.0.CO;2-2
– volume: 36
  start-page: 27
  year: 2015
  ident: 10.1016/j.cageo.2025.106073_b2
  article-title: A review of the principles and applications of the NMR technique for near-surface characterization
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-014-9304-0
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.cageo.2025.106073_b7
  article-title: Forward modeling steady-state free precession in surface NMR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3221624
– volume: 69
  start-page: 37
  issue: 1–2
  year: 1946
  ident: 10.1016/j.cageo.2025.106073_b19
  article-title: Resonance absorption by nuclear magnetic moments in a solid
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.37
– volume: 10
  start-page: 2850
  issue: 8
  year: 2020
  ident: 10.1016/j.cageo.2025.106073_b20
  article-title: Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by using the Jacobi polynomials
  publication-title: Appl. Sci.
  doi: 10.3390/app10082850
SSID ssj0002285
Score 2.460367
Snippet Surface nuclear magnetic resonance (SNMR) is a geophysical extension of nuclear magnetic resonance (NMR) that enables non-invasive mapping of subsurface...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106073
SubjectTerms Bloch equations
Matrix exponential integration
SNMR
Spectral diagonalization
Title Spectral-diagonalization-based matrix exponential integration for efficient and stable solutions of full-Bloch equations in surface NMR
URI https://dx.doi.org/10.1016/j.cageo.2025.106073
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002285
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhIvaNy0cZMfeBtGrRPX8eOYxmAaFUwF9S1KHLvbtGWlXabuF_Bb-JccXxMYqtgDL1FlNY6V8-mc45PP30HoNdWplonIiK6qgqS0EiRTTJKBYjw1Ij-V1Sn4dshHo2wyEZ97vZ_hLMzVGa_rbLkUs_9qahgDY5ujs7cwd5wUBuA3GB2uYHa4_pPhTUd5U74gYPmpzbPdSUtiAla1fW40-ZdG2f-iNkwhK7rhJCMC61BZWYlAPof00Zyuios26aUp2pN3EAePt9X3puWjL5q5LsBTjD4ddbPe0DpiYYE2VV5As6UvHjolg7Gh84dYaqv8zhN9gbHrJkLw4MSP7x43helGEm84Up5D0NQz5Yd9SYNGFnTrpgE8Rgqs66ap647rHS3sZPuuB8qNGODKEaewv5_a452UvW3__bvi9h-RMPITA_XtNLeT5GaS3E1yB61TzgQ40PWdj3uTgxj2Kc1YEGg1aw8SV5ZMeGMtf0-DOqnNeAM98HsSvOOw9BD1VP0I3du3PZ-vH6MfqxGFHaJwB1G4gygMiMIRURjshR2icEQUvtC4RRSOiIJpsEcUBkQ9QV_f7413PxDfv4NI2h9SkpSyKPtC9ksIokbGKWVaw_5YKMmzRIFP0IJV5kOzZkWiaUlZyaWmhazSUsth8hSt1bDyTYThSQxyrQEvpExTyksmNB-UimpZKCHkFnoTXmc-czIt-QojbqFheOW5R7zLIHMA0aobn93uOc_R_RbfL9Da5bxRL9FdeXV5spi_8gj6BUHpp8c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral-diagonalization-based+matrix+exponential+integration+for+efficient+and+stable+solutions+of+full-Bloch+equations+in+surface+NMR&rft.jtitle=Computers+%26+geosciences&rft.au=Lin%2C+Tingting&rft.au=Wang%2C+Qingyue&rft.au=Jiang%2C+Chuandong&rft.au=Ren%2C+Chunpeng&rft.date=2026-02-01&rft.issn=0098-3004&rft.volume=207&rft.spage=106073&rft_id=info:doi/10.1016%2Fj.cageo.2025.106073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2025_106073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon