A supervised variational autoencoder framework for dimensionality reduction and predictive modeling in high-dimensional socioeconomic data

We introduce an estimation framework utilizing a Supervised Variational Autoencoder (SVAE) to address challenges posed by high-dimensional socioeconomic data. Unlike classical linear dimensionality reduction methods, such as PCA and Lasso regression, the proposed SVAE effectively captures complex no...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Economy and Technology Ročník 4; s. 9 - 19
Hlavní autori: Xue, Pei, Li, Tianshun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2026
KeAi Communications Co., Ltd
Predmet:
ISSN:2949-9488, 2949-9488
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We introduce an estimation framework utilizing a Supervised Variational Autoencoder (SVAE) to address challenges posed by high-dimensional socioeconomic data. Unlike classical linear dimensionality reduction methods, such as PCA and Lasso regression, the proposed SVAE effectively captures complex nonlinear interactions through supervised latent representation learning. Empirical analyses using comprehensive cross-country data from the World Bank (196 countries, 1997–2023) demonstrate the SVAE framework’s superior predictive accuracy, interpretability, and robustness in forecasting GDP growth, highlighting its potential for policy evaluation and macroeconomic forecasting.
ISSN:2949-9488
2949-9488
DOI:10.1016/j.ject.2025.06.001