A supervised variational autoencoder framework for dimensionality reduction and predictive modeling in high-dimensional socioeconomic data
We introduce an estimation framework utilizing a Supervised Variational Autoencoder (SVAE) to address challenges posed by high-dimensional socioeconomic data. Unlike classical linear dimensionality reduction methods, such as PCA and Lasso regression, the proposed SVAE effectively captures complex no...
Uloženo v:
| Vydáno v: | Journal of Economy and Technology Ročník 4; s. 9 - 19 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2026
KeAi Communications Co., Ltd |
| Témata: | |
| ISSN: | 2949-9488, 2949-9488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!