Distributed Discrete Morse Sandwich: Efficient Computation of Persistence Diagrams for Massive Scalar Data
The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich" (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a sing...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 37; H. 1; S. 137 - 154 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2026
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich" (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a single node, using shared-memory parallelism. In this work, we extend DMS to distributed-memory parallelism for the efficient and scalable computation of persistence diagrams for massive datasets across multiple compute nodes. On the one hand, we can leverage the embarrassingly parallel procedure of the first and most time-consuming step of DMS (namely the discrete gradient computation). On the other hand, the efficient distributed computations of the subsequent DMS steps are much more challenging. To address this, we have extensively revised the DMS routines by contributing a new self-correcting distributed pairing algorithm, redesigning key data structures and introducing computation tokens to coordinate distributed computations. We have also introduced a dedicated communication thread to overlap communication and computation. Detailed performance analyses show the scalability of our hybrid MPI+thread approach for strong and weak scaling using up to 16 nodes of 32 cores (512 cores total). Our algorithm outperforms DIPHA , a reference method for the distributed computation of persistence diagrams, with an average speedup of <inline-formula><tex-math notation="LaTeX">\times 8</tex-math> <mml:math><mml:mrow><mml:mo>×</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="leguillou-ieq1-3626047.gif"/> </inline-formula> on 512 cores. We show the practical capabilities of our approach by computing the persistence diagram of a public 3D scalar field of 6 billion vertices in 174 seconds on 512 cores. Finally, we provide a usage example of our open-source implementation at https://github.com/eve-le-guillou/DDMS-example . |
|---|---|
| AbstractList | The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich" (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a single node, using shared-memory parallelism. In this work, we extend DMS to distributed-memory parallelism for the efficient and scalable computation of persistence diagrams for massive datasets across multiple compute nodes. On the one hand, we can leverage the embarrassingly parallel procedure of the first and most time-consuming step of DMS (namely the discrete gradient computation). On the other hand, the efficient distributed computations of the subsequent DMS steps are much more challenging. To address this, we have extensively revised the DMS routines by contributing a new self-correcting distributed pairing algorithm, redesigning key data structures and introducing computation tokens to coordinate distributed computations. We have also introduced a dedicated communication thread to overlap communication and computation. Detailed performance analyses show the scalability of our hybrid MPI+thread approach for strong and weak scaling using up to 16 nodes of 32 cores (512 cores total). Our algorithm outperforms DIPHA , a reference method for the distributed computation of persistence diagrams, with an average speedup of <inline-formula><tex-math notation="LaTeX">\times 8</tex-math> <mml:math><mml:mrow><mml:mo>×</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="leguillou-ieq1-3626047.gif"/> </inline-formula> on 512 cores. We show the practical capabilities of our approach by computing the persistence diagram of a public 3D scalar field of 6 billion vertices in 174 seconds on 512 cores. Finally, we provide a usage example of our open-source implementation at https://github.com/eve-le-guillou/DDMS-example . The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The “Discrete Morse Sandwich” (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a single node, using shared-memory parallelism. In this work, we extend DMS to distributed-memory parallelism for the efficient and scalable computation of persistence diagrams for massive datasets across multiple compute nodes. On the one hand, we can leverage the embarrassingly parallel procedure of the first and most time-consuming step of DMS (namely the discrete gradient computation). On the other hand, the efficient distributed computations of the subsequent DMS steps are much more challenging. To address this, we have extensively revised the DMS routines by contributing a new self-correcting distributed pairing algorithm, redesigning key data structures and introducing computation tokens to coordinate distributed computations. We have also introduced a dedicated communication thread to overlap communication and computation. Detailed performance analyses show the scalability of our hybrid MPI+thread approach for strong and weak scaling using up to 16 nodes of 32 cores (512 cores total). Our algorithm outperforms DIPHA, a reference method for the distributed computation of persistence diagrams, with an average speedup of ×8 on 512 cores. We show the practical capabilities of our approach by computing the persistence diagram of a public 3D scalar field of 6 billion vertices in 174 seconds on 512 cores. Finally, we provide a usage example of our open-source implementation at https://github.com/eve-le-guillou/DDMS-example. |
| Author | Le Guillou, Eve Fortin, Pierre Tierny, Julien |
| Author_xml | – sequence: 1 givenname: Eve orcidid: 0009-0008-6123-2039 surname: Le Guillou fullname: Le Guillou, Eve email: eve.le_guillou@sorbonne-universite.fr organization: CNRS, Sorbonne Université, Paris, France – sequence: 2 givenname: Pierre orcidid: 0000-0003-3117-9122 surname: Fortin fullname: Fortin, Pierre email: pierre.fortin@univ-lille.fr organization: CNRS, Centrale Lille, UMR 9189 CRIStAL, University Lille, Lille, France – sequence: 3 givenname: Julien orcidid: 0000-0003-0056-2831 surname: Tierny fullname: Tierny, Julien email: julien.tierny@sorbonne-universite.fr organization: CNRS, Sorbonne Université, Paris, France |
| BackLink | https://hal.science/hal-05337555$$DView record in HAL |
| BookMark | eNpFkE9PAjEUxBuDiYB-ABMPvXpYbF_b_eONAIoJRBLw3HS7rZTALmlXjN_ebiB6epPJzCTvN0C9uqkNQveUjCglxdNmNV2PgIAYsRRSwrMr1KdC5AnQnPWiJlwkBdDiBg1C2BFCuSC8j3ZTF1rvyq_WVDhq7U1r8LLxweC1qqtvp7fPeGat087ULZ40h-NXq1rX1LixeGV8iAOm1ia21adXh4Bt4_FSheBOcUOrvfJ4qlp1i66t2gdzd7lD9PEy20zmyeL99W0yXiQaiKAJALMVMA5MpPGfoirKglVZLvKSs5SBySxQwwGiDSWATm2lyoIzQvKySikbosfz7lbt5dG7g_I_slFOzscL2XlEMJYJIU5dlp6z2jcheGP_CpTIDqzswMoOrLyAjZ2Hc8cZY_7zNMKlGbBfSgN1UA |
| CODEN | ITDSEO |
| Cites_doi | 10.1109/TVCG.2006.186 10.1007/s11227-024-06374-5 10.1111/cgf.12933 10.1109/TVCG.2017.2743980 10.1145/2261250.2261289 10.1515/9781400881802 10.1109/LDAV.2018.8739196 10.1109/ICPP.2016.37 10.1109/TVCG.2011.249 10.1109/TVCG.2020.3030353 10.1109/PacificVis.2018.00015 10.1109/TVCG.2010.253 10.1109/TVCG.2004.3 10.1109/TVCG.2019.2934256 10.1109/TVCG.2023.3238008 10.1007/s00454-013-9529-6 10.1111/cgf.12361 10.1145/3350755.3400244 10.1090/mbk/069 10.1109/UrgentHPC49580.2019.00007 10.1109/TVCG.2024.3390219 10.1109/LDAV48142.2019.8944365 10.1109/TPDS.2019.2898436 10.1109/TVCG.2014.2346403 10.1109/TVCG.2017.2743938 10.1109/TVCG.2018.2864432 10.1140/epjds/s13688-017-0109-5 10.1090/coll/018 10.1007/978-3-030-83500-2_16 10.1109/TVCG.2021.3110663 10.1109/TVCG.2018.2864848 10.1111/j.1365-2966.2011.18394.x 10.1002/jcc.25181 10.1109/TVCG.2019.2934368 10.1109/TVCG.2006.57 10.1007/978-3-031-97239-3_3 10.1016/j.jsc.2016.03.008 10.1109/TPAMI.2011.95 10.1002/qua.26133 10.1109/TVCG.2012.228 10.1109/TVCG.2020.3030441 10.2307/1968813 10.1016/B978-012387582-2/50038-1 10.1007/s00454-002-2885-2 10.1007/978-3-319-04099-8_7 10.1109/LDAV57265.2022.9966403 10.1016/s0925-7721(02)00093-7 10.1090/advsov/021/03 10.1007/s00371-012-0726-8 10.1145/2535927 10.1137/1.9781611973198.4 10.1145/276884.276892 10.1109/TVCG.2015.2452919 10.1007/978-3-662-44199-2_28 10.1007/978-3-030-43036-8_2 10.1145/77635.77639 10.1109/VISUAL.2004.96 10.1111/cgf.12596 |
| ContentType | Journal Article |
| Copyright | Copyright |
| Copyright_xml | – notice: Copyright |
| DBID | 97E RIA RIE AAYXX CITATION 1XC VOOES |
| DOI | 10.1109/TPDS.2025.3626047 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 154 |
| ExternalDocumentID | oai:HAL:hal-05337555v1 10_1109_TPDS_2025_3626047 11219172 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Commission grantid: ERC-2019-COG funderid: 10.13039/501100000780 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c2051-223fd23423560259d9b93d7858b43632e7f21e422b932b22c6fdab943008bd613 |
| IEDL.DBID | RIE |
| ISSN | 1045-9219 |
| IngestDate | Sat Nov 29 15:05:28 EST 2025 Thu Nov 27 00:56:08 EST 2025 Wed Nov 26 07:22:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | distributed-memory algorithms Topological data analysis high-performance computing persistent homology |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2051-223fd23423560259d9b93d7858b43632e7f21e422b932b22c6fdab943008bd613 |
| ORCID | 0000-0003-0056-2831 0009-0008-6123-2039 0000-0003-3117-9122 |
| OpenAccessLink | https://hal.science/hal-05337555 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1109_TPDS_2025_3626047 ieee_primary_11219172 hal_primary_oai_HAL_hal_05337555v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2026 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref11 ref55 ref10 ref17 ref16 ref19 Cheng (ref67) 2007 (ref72) 2020 ref50 Henselman-Petrusek (ref61) 2018 Milnor (ref46) 1963 ref48 ref47 ref42 ref41 Robins (ref52) 1999; 24 Wagner (ref58) ref44 Hager (ref70) ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref35 Bauer (ref54) 2019 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Forman (ref45) 2001 ref2 ref1 ref39 ref38 Nigmetov (ref66) 2024 Maljovec (ref6) Tóth (ref62) 2025 Gueunet (ref18) Frosini (ref51) 1999; 9 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 Klacansky (ref71) 2020 |
| References_xml | – year: 2018 ident: ref61 article-title: Eirene.jl package for homological algebra – ident: ref1 doi: 10.1109/TVCG.2006.186 – year: 2001 ident: ref45 article-title: A user’s guide to discrete morse theory publication-title: Séminaire Lotharingien de Combinatoire 48 – ident: ref65 doi: 10.1007/s11227-024-06374-5 – ident: ref15 doi: 10.1111/cgf.12933 – ident: ref29 doi: 10.1109/TVCG.2017.2743980 – ident: ref17 doi: 10.1145/2261250.2261289 – volume-title: Morse Theory year: 1963 ident: ref46 doi: 10.1515/9781400881802 – ident: ref31 doi: 10.1109/LDAV.2018.8739196 – ident: ref69 doi: 10.1109/ICPP.2016.37 – ident: ref4 doi: 10.1109/TVCG.2011.249 – ident: ref27 doi: 10.1109/TVCG.2020.3030353 – ident: ref30 doi: 10.1109/PacificVis.2018.00015 – ident: ref2 doi: 10.1109/TVCG.2010.253 – ident: ref22 doi: 10.1109/TVCG.2004.3 – ident: ref35 doi: 10.1109/TVCG.2019.2934256 – ident: ref37 doi: 10.1109/TVCG.2023.3238008 – ident: ref53 doi: 10.1007/s00454-013-9529-6 – ident: ref3 doi: 10.1111/cgf.12361 – ident: ref49 doi: 10.1145/3350755.3400244 – year: 2019 ident: ref54 article-title: Ripser: Efficient computation of vietoris-rips persistence barcodes – ident: ref14 doi: 10.1090/mbk/069 – ident: ref36 doi: 10.1109/UrgentHPC49580.2019.00007 – ident: ref40 doi: 10.1109/TVCG.2024.3390219 – ident: ref32 doi: 10.1109/LDAV48142.2019.8944365 – ident: ref21 doi: 10.1109/TPDS.2019.2898436 – start-page: 64 volume-title: Proc. IEEE Pacific Vis. ident: ref6 article-title: Topology-inspired partition-based sensitivity analysis and visualization of nuclear simulations – ident: ref10 doi: 10.1109/TVCG.2014.2346403 – year: 2025 ident: ref62 article-title: A user’s guide to KSig: GPU-accelerated computation of the signature kernel – ident: ref39 doi: 10.1109/TVCG.2017.2743938 – year: 2020 ident: ref72 article-title: TTK data – ident: ref34 doi: 10.1109/TVCG.2018.2864432 – ident: ref64 doi: 10.1140/epjds/s13688-017-0109-5 – volume: 9 start-page: 596 year: 1999 ident: ref51 article-title: Size theory as a topological tool for computer vision publication-title: Pattern Recognit. Image Anal. – ident: ref47 doi: 10.1090/coll/018 – ident: ref38 doi: 10.1007/978-3-030-83500-2_16 – volume-title: Proc. Eurographics Symp. Parallel Graph. Visual. ident: ref18 article-title: Task-based augmented reeb graphs with dynamic ST-Trees – ident: ref57 doi: 10.1109/TVCG.2021.3110663 – ident: ref25 doi: 10.1109/TVCG.2018.2864848 – ident: ref12 doi: 10.1111/j.1365-2966.2011.18394.x – ident: ref9 doi: 10.1002/jcc.25181 – ident: ref33 doi: 10.1109/TVCG.2019.2934368 – ident: ref23 doi: 10.1109/TVCG.2006.57 – ident: ref63 doi: 10.1007/978-3-031-97239-3_3 – ident: ref59 doi: 10.1016/j.jsc.2016.03.008 – ident: ref48 doi: 10.1109/TPAMI.2011.95 – year: 2020 ident: ref71 article-title: Open scientific visualization data sets – ident: ref11 doi: 10.1002/qua.26133 – ident: ref26 doi: 10.1109/TVCG.2012.228 – ident: ref8 doi: 10.1109/TVCG.2020.3030441 – ident: ref43 doi: 10.2307/1968813 – ident: ref44 doi: 10.1016/B978-012387582-2/50038-1 – volume-title: Proc. Cray User Group ident: ref70 article-title: Prospects for truly asynchronous communication with pure MPI and hybrid MPI/OpenMP on current supercomputing platforms – ident: ref16 doi: 10.1007/s00454-002-2885-2 – ident: ref55 doi: 10.1007/978-3-319-04099-8_7 – ident: ref5 doi: 10.1109/LDAV57265.2022.9966403 – ident: ref20 doi: 10.1016/s0925-7721(02)00093-7 – ident: ref50 doi: 10.1090/advsov/021/03 – ident: ref56 doi: 10.1007/s00371-012-0726-8 – ident: ref7 doi: 10.1145/2535927 – year: 2024 ident: ref66 article-title: Distributed computation of persistent cohomology – ident: ref41 doi: 10.1137/1.9781611973198.4 – ident: ref19 doi: 10.1145/276884.276892 – ident: ref13 doi: 10.1109/TVCG.2015.2452919 – start-page: 60:1 volume-title: Proc. Symp. Comput. Geometry ident: ref58 article-title: Slice, simplify and stitch: Topology-preserving simplification scheme for massive voxel data – year: 2007 ident: ref67 article-title: A novel parallel sorting algorithm for contemporary architectures – ident: ref60 doi: 10.1007/978-3-662-44199-2_28 – ident: ref68 doi: 10.1007/978-3-030-43036-8_2 – ident: ref42 doi: 10.1145/77635.77639 – volume: 24 year: 1999 ident: ref52 article-title: Toward computing homology from finite approximations publication-title: Topol. Proc. – ident: ref28 doi: 10.1109/VISUAL.2004.96 – ident: ref24 doi: 10.1111/cgf.12596 |
| SSID | ssj0014504 |
| Score | 2.4681158 |
| Snippet | The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich"... The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The “Discrete Morse Sandwich”... |
| SourceID | hal crossref ieee |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 137 |
| SubjectTerms | Computational efficiency Computer Science Data structures Distributed algorithms Distributed databases distributed-memory algorithms Faces Filtration Hands high-performance computing Parallel processing persistent homology Three-dimensional displays Topological data analysis Topology |
| Title | Distributed Discrete Morse Sandwich: Efficient Computation of Persistence Diagrams for Massive Scalar Data |
| URI | https://ieeexplore.ieee.org/document/11219172 https://hal.science/hal-05337555 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDKGLErzTGk8lg61bGvBGBcABCAhpuS78W8LAZvvz3fa8bysWDt6bp2qW_fvxe-_p7hDy5knvaFcqRiddygkRHjmA-jmWpgsDolrTeFu_DcDxuz-fRpHisbt_CGGOs85lpYNLe5etMbfGorAncAM0LWHFLYRjmj7V-rgwCbmMFgnnBnQjKFVeYnhs1Z5PuFExBxhsovuJiKJWDTai0QBfIg9gqdmvpV_75U-fkrOCQtJODfkGOTFollX18BlpM1yo5PRAbvCQfXdTIxfBWRlNIA13cGDrKVmtDpyLVX0u1eKE9KykBLdK8PgsczRKKrvI4JKBm-FqgU9eaAuOlI6DfsGRCswKsZNoVG1Ejb_3e7HXgFJEWHMVgVjrAERLNUAwQCBAYRDqSka_DNm_LwG_5zIQJ80zAGGQzyZhqJVpIVG5321IDI7gi5TRLzTWhnClPJX7kaiOCQIdCedBlYAcpqTxYQOrked_18WcuqBFbQ8SNYsQpRpziAqc6eQRwfsqhFPagM4wxD98Qh5zznVcnNUTlt7YCkJs_8m_JCbRRnKPckfJmtTX35FjtNsv16sEOqm8TEskn |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBt1ifQTwJazfZpNv1Jlap2BbBKt6WvBb10Epb6993Jl21Fw_eQsgmS748vkkm3wCcxkZxF2sbmYLXI1m4LNIiobFsrJTe1U3wtnhqp91u4_k5uy8fq4e3MN774HzmzykZ7vLdwH7QUVkNuQGZF7jiLigpBZ8-1_q5NJAqRAtEA0NFGZYsLzF5nNV6980HNAaFOif5lZiCqcxsQ_Mv5AQ5E10lbC43a__8rXVYLVkku5zCvgFzvr8Ja98RGlg5YTdhZUZucAvemqSSSwGuvGOYRsI49qwzGI48e9B99_lqXy7YdRCVwBbZtL4AHRsUjJzlaVBgzfi1JreuEUPOyzpIwHHRxGY12smsqcd6Gx5vrntXraiMtRBZgfMyQpZQOEFygEiB0CRymckSlzZUw8ikngifFoJ7KQRmCyOErRdOG9JujxvGISfYgUp_0Pe7wJSw3BZJFjuvpXSpthy7DC0hayzHJaQKZ99dn79PJTXyYIrEWU445YRTXuJUhRME56cciWG3Lts55dEr4lQpNeFV2CZUfmsrAdn7I_8Yllq9Tjtv33bv9mEZ2ytPVQ6gMh5--ENYtJPx62h4FAbYF7WdzG4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Discrete+Morse+Sandwich%3A+Efficient+Computation+of+Persistence+Diagrams+for+Massive+Scalar+Data&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Le+Guillou%2C+Eve&rft.au=Fortin%2C+Pierre&rft.au=Tierny%2C+Julien&rft.date=2026-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9219&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTPDS.2025.3626047&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-05337555v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |