WIGNER’S THEOREM IN ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -TYPE SPACES

We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real $...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Australian Mathematical Society Vol. 97; no. 2; pp. 279 - 284
Main Authors: JIA, WEIKE, TAN, DONGNI
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.04.2018
Subjects:
ISSN:0004-9727, 1755-1633
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -type spaces.
AbstractList We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -type spaces.
Author TAN, DONGNI
JIA, WEIKE
Author_xml – sequence: 1
  givenname: WEIKE
  surname: JIA
  fullname: JIA, WEIKE
  email: jiaweike2017@163.com
  organization: Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China email jiaweike2017@163.com
– sequence: 2
  givenname: DONGNI
  orcidid: 0000-0002-0151-1203
  surname: TAN
  fullname: TAN, DONGNI
  email: tandongni0608@sina.cn
  organization: Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China email tandongni0608@sina.cn
BookMark eNp9kMFKw0AQhhepYFt9AG8Be9BDdGfTZLPHUmMbqG1pIipWwybZ1ZQ2qUkKlhDwNXw9n8SUFgRFTzPD_38zw99AtTiJBULHgM8BA71wMMZtRgkFWnUM8B6qA9V1FQxNq6H6RlY3-gFqZNmsmnSdmHXk3tq9oTX5fP9wFLdvjSbWtWIPlVYxXfD8JeDzYlCWT8U0imW-VsrT6SqOgiQUD45r3z0Wb3BpWO3yrKWo7v3YUpxxp2s5h2hf8nkmjna1iW6uLLfbVwejnt3tDNSAYB2rGoTUZMxkITWAC0aIz7jUQASGL6UMMJEaBcYCwblpUqpjPSSMMp9QKrlsa010st27TJPXlchyb5as0rg66RFqUgwATKtcsHUFaZJlqZDeMo0WPF17gL1NeN6v8CqG_mCCKOd5lMR5yqP5v6S2I_nCT6PwWXw_9Tf1BQNWgFE
CitedBy_id crossref_primary_10_1007_s00010_025_01222_0
crossref_primary_10_1016_j_laa_2020_12_006
crossref_primary_10_1017_S0013091521000250
crossref_primary_10_1007_s00010_020_00723_4
crossref_primary_10_1007_s43034_024_00378_1
crossref_primary_10_2989_16073606_2020_1783010
crossref_primary_10_1007_s00009_021_01791_9
crossref_primary_10_1007_s10473_024_0303_z
crossref_primary_10_1007_s00025_025_02445_y
crossref_primary_10_1007_s13226_025_00793_7
crossref_primary_10_1016_j_jmaa_2020_124058
crossref_primary_10_1007_s43034_021_00164_3
crossref_primary_10_1017_S0013091521000079
crossref_primary_10_1007_s00010_024_01119_4
Cites_doi 10.1016/j.physleta.2008.09.052
10.1006/jfan.2002.3970
10.1016/j.physleta.2014.05.039
10.1016/S0034-4877(04)80012-0
10.1007/s00010-014-0296-0
10.1007/BF01818323
10.1017/S000497270900015X
10.1016/j.physleta.2013.08.017
10.5486/PMD.2012.5359
10.1016/0003-4916(90)90213-8
ContentType Journal Article
Copyright 2017 Australian Mathematical Publishing Association Inc.
Copyright_xml – notice: 2017 Australian Mathematical Publishing Association Inc.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0004972717000910
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate W. Jia and D. Tan
Wigner’s theorem
EISSN 1755-1633
EndPage 284
ExternalDocumentID 10_1017_S0004972717000910
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
23N
2WC
4.4
5GY
5VS
6J9
6TJ
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABROB
ABTAH
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACBMC
ACDLN
ACETC
ACGFO
ACGFS
ACIMK
ACMRT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
P2P
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S10
S6-
S6U
SAAAG
T9M
TN5
TWZ
UPT
UT1
VH1
WFFJZ
WQ3
WXU
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AAYXX
ABXHF
ACEJA
ADXHL
AFFHD
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2050-31d789989d761ae922b9af31ec6bfffc02f37199ceaa8877505d2979b277faf43
IEDL.DBID BENPR
ISSN 0004-9727
IngestDate Fri Jul 25 11:47:07 EDT 2025
Sat Nov 29 03:58:51 EST 2025
Tue Nov 18 22:38:59 EST 2025
Tue Jan 21 06:20:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords L ∞ -type spaces
Wigner’s theorem
primary 46B03
phase equivalent
secondary 46B04
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2050-31d789989d761ae922b9af31ec6bfffc02f37199ceaa8877505d2979b277faf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0151-1203
OpenAccessLink https://doi.org/10.1017/s0004972717000910
PQID 2787011193
PQPubID 5514771
PageCount 6
ParticipantIDs proquest_journals_2787011193
crossref_primary_10_1017_S0004972717000910
crossref_citationtrail_10_1017_S0004972717000910
cambridge_journals_10_1017_S0004972717000910
PublicationCentury 2000
PublicationDate 20180400
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 20180400
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Bulletin of the Australian Mathematical Society
PublicationTitleAlternate Bull. Aust. Math. Soc
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0004972717000910_r1
S0004972717000910_r11
S0004972717000910_r10
S0004972717000910_r2
Mazur (S0004972717000910_r5) 1932; 194
S0004972717000910_r12
S0004972717000910_r9
Huang (S0004972717000910_r3)
S0004972717000910_r7
S0004972717000910_r8
S0004972717000910_r6
S0004972717000910_r4
References_xml – ident: S0004972717000910_r10
  doi: 10.1016/j.physleta.2008.09.052
– ident: S0004972717000910_r6
  doi: 10.1006/jfan.2002.3970
– ident: S0004972717000910_r3
  article-title: Wigner’s theorem in atomic L p -spaces (p > 0)
  publication-title: Publ. Math. Debrecen
– ident: S0004972717000910_r1
  doi: 10.1016/j.physleta.2014.05.039
– ident: S0004972717000910_r2
  doi: 10.1016/S0034-4877(04)80012-0
– volume: 194
  start-page: 946
  year: 1932
  ident: S0004972717000910_r5
  article-title: Sur les transformations isométriques d’espaces vectoriels normés
  publication-title: C. R. Math. Acad. Sci. Paris
– ident: S0004972717000910_r12
  doi: 10.1007/s00010-014-0296-0
– ident: S0004972717000910_r8
  doi: 10.1007/BF01818323
– ident: S0004972717000910_r11
  doi: 10.1017/S000497270900015X
– ident: S0004972717000910_r7
  doi: 10.1016/j.physleta.2013.08.017
– ident: S0004972717000910_r4
  doi: 10.5486/PMD.2012.5359
– ident: S0004972717000910_r9
  doi: 10.1016/0003-4916(90)90213-8
SSID ssj0045528
Score 2.1017992
Snippet We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Mathematical functions
Title WIGNER’S THEOREM IN ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -TYPE SPACES
URI https://www.cambridge.org/core/product/identifier/S0004972717000910/type/journal_article
https://www.proquest.com/docview/2787011193
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1755-1633
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0045528
  issn: 0004-9727
  databaseCode: M7S
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1755-1633
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0045528
  issn: 0004-9727
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1755-1633
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0045528
  issn: 0004-9727
  databaseCode: M2P
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iHQ_wwLhNjF2UBx42hEXqOHH8hMaWbZVoiJpOFBFW-SqQUDvWDg1VlfY39vf2S2Y3SbcJqS-85CGxJSvf8XeO7ePvALwJglATxXwkuBaIRCZCXGuOJOchNsq6FB7Pik3QNI17PZZVG26jKq2y5sQZUauhdHvk77GzLDsxWfDh9DdyVaPc6WpVQmMJlp1SGWnA8sckzTo1F5MwxCUX-wQx66rrc82ZaLSLju07p1DnvOZddYX7Xuo-Sc88z8HK_475KTypYk5vtzSSZ_BAD57D4_ZcsHX0Ao6_tA7TpHN9eZV73aPkcydpe63UK7YnhW3ywwI5-TSdnkwKa5Djv950u3C3SoZKf8u7rd73yUVzP0rIdKfYQd2vWeLl2e5ekr-E44Oku3eEqooLSGI_dISsqFuAMUWjJtcMY8G4CZpaRsIYI31sAtpkTGrOLTvZaCNUmFEmMKWGGxKsQmMwHOhX4DFlYsKE0kZIwmJuF2ahr4USoSHWAqI1eDf_2_1q3oz6Zc4Z7f8Dzhr4NSB9WamXuyIavxZ1eTvvclpKdyxqvFFDeDuaW_xeL_68Do9sIBWXGT0b0BifnetNeCj_jH-OzrYqo9yCpTbO3JPmNwp-5V4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ZbtNAFL0qLRL0gbKqhQJ-AKlFjOqMx8s8IFS1LrGamKhx1SBczKwCCSWlCUsVReI3-Ak-ii9hxo5TKqS89YFXe8ayPefcZZZzAZ54nq-IpC7iTHFEAh0gphRDgjEfa2lcCovKYhNhmka9Hu0swK_6LIzdVlnbxNJQy4Gwc-Rb2CLLEJN6L08-I1s1yq6u1iU0Kljsq7NvJmUbvkh2zfg-xXgvznaaaFpVAAns-tboyNAmGVSaDJ4pijGnTHsNJQKutRYu1l7YoFQoxgwDjUf1JaYh5TgMNdPEM8-9AkvEZEKWV23cqS0_8X1cWX6XIGoCg3oVtZSotrG4uWb18KyP_lvL4aJPvOgSSj-3t_K__aGbcGMaUTvbFQVuwYLq34bl9kyOdngHDo-SV2l88PvHz66TNePXB3HbSVIn3xjnpskHA9NxazJ5N84N3UZnzmQjt2dmBlK97WZJ73j8vbEbxGSymW-i7E0ndrqd7Z24excOL-W77sFif9BXq-BQqSNCuVSaC0IjZtJO31Vccl8Tg-9gDZ7PRreYWoVhUe2oC4t_wLAGbg2AQky12W2JkE_zujybdTmphEnmNV6vIXP-Nud4uT__9mO41szaraKVpPsP4LoJGaNq79I6LI5Ov6iHcFV8HX0cnj4q6eDA-8tG1x8G4z56
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VghA8cC2iUMAPILWIVZ31-rIPCFWNQ622JqpTkQqD2ataCSWlCZcqisRv8Ct8Dl_CrC8pFVLe-sCr7bVs75k5M97ZMwg99TxfU8VcLLgWmAYmwFxrjiXnPjEKKIVHZbOJME2jfp91F9CvZi-MLatsfGLpqNVQ2n_k68QiCwyTeeumLovotjuvjj9j20HKrrQ27TQqiGzr02-Qvo1eJm2Y62eEdOLe5hauOwxgSVzfOiAV2oSDKcjmuWaECMaN19IyEMYY6RLjhS3GpOYcrBHY1VeEhUyQMDTcUA_uewldDinECWXZYNawAPV9UrGASzGDIKFZUS3lqm1cDsesNp7l6791Hc7z43l6KDmvc_N__lq30I060nY2KtO4jRb04A66vjuTqR3dRftvk9dpvPf7x8_M6W3Fb_biXSdJnXx1ksMlhwDfyc50-mGSgxmOT53pam730gyVfpf1kv77yfdWO4jpdC1fw72Dbuxk3Y3NOFtC-xfyXvfQ4mA40PeRw5SJKBNKGyEpiziko76rhRK-oYD7YBm9mM10UXuLUVFV2oXFP8BYRm4DhkLWmu22dcineUOez4YcV4Il8y5eaeBz9jRn2Hkw__QTdBVAVewk6fZDdA0iyagqaVpBi-OTL_oRuiK_jo9GJ49Ly3DQx4sG1x8BAEdK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WIGNER%E2%80%99S+THEOREM+IN+-TYPE+SPACES&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=JIA%2C+WEIKE&rft.au=TAN%2C+DONGNI&rft.date=2018-04-01&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=97&rft.issue=2&rft.spage=279&rft.epage=284&rft_id=info:doi/10.1017%2FS0004972717000910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0004972717000910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon