WIGNER’S THEOREM IN ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -TYPE SPACES
We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real $...
Gespeichert in:
| Veröffentlicht in: | Bulletin of the Australian Mathematical Society Jg. 97; H. 2; S. 279 - 284 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.04.2018
|
| Schlagworte: | |
| ISSN: | 0004-9727, 1755-1633 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We investigate surjective solutions of the functional equation
$$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$
where
$f:X\rightarrow Y$
is a map between two real
${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$
-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real
${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$
-type spaces. |
|---|---|
| AbstractList | We investigate surjective solutions of the functional equation
$$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$
where
$f:X\rightarrow Y$
is a map between two real
${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$
-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real
${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$
-type spaces. |
| Author | TAN, DONGNI JIA, WEIKE |
| Author_xml | – sequence: 1 givenname: WEIKE surname: JIA fullname: JIA, WEIKE email: jiaweike2017@163.com organization: Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China email jiaweike2017@163.com – sequence: 2 givenname: DONGNI orcidid: 0000-0002-0151-1203 surname: TAN fullname: TAN, DONGNI email: tandongni0608@sina.cn organization: Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China email tandongni0608@sina.cn |
| BookMark | eNp9kMFKw0AQhhepYFt9AG8Be9BDdGfTZLPHUmMbqG1pIipWwybZ1ZQ2qUkKlhDwNXw9n8SUFgRFTzPD_38zw99AtTiJBULHgM8BA71wMMZtRgkFWnUM8B6qA9V1FQxNq6H6RlY3-gFqZNmsmnSdmHXk3tq9oTX5fP9wFLdvjSbWtWIPlVYxXfD8JeDzYlCWT8U0imW-VsrT6SqOgiQUD45r3z0Wb3BpWO3yrKWo7v3YUpxxp2s5h2hf8nkmjna1iW6uLLfbVwejnt3tDNSAYB2rGoTUZMxkITWAC0aIz7jUQASGL6UMMJEaBcYCwblpUqpjPSSMMp9QKrlsa010st27TJPXlchyb5as0rg66RFqUgwATKtcsHUFaZJlqZDeMo0WPF17gL1NeN6v8CqG_mCCKOd5lMR5yqP5v6S2I_nCT6PwWXw_9Tf1BQNWgFE |
| CitedBy_id | crossref_primary_10_1007_s00010_025_01222_0 crossref_primary_10_1016_j_laa_2020_12_006 crossref_primary_10_1017_S0013091521000250 crossref_primary_10_1007_s00010_020_00723_4 crossref_primary_10_1007_s43034_024_00378_1 crossref_primary_10_2989_16073606_2020_1783010 crossref_primary_10_1007_s00009_021_01791_9 crossref_primary_10_1007_s10473_024_0303_z crossref_primary_10_1007_s00025_025_02445_y crossref_primary_10_1007_s13226_025_00793_7 crossref_primary_10_1016_j_jmaa_2020_124058 crossref_primary_10_1007_s43034_021_00164_3 crossref_primary_10_1017_S0013091521000079 crossref_primary_10_1007_s00010_024_01119_4 |
| Cites_doi | 10.1016/j.physleta.2008.09.052 10.1006/jfan.2002.3970 10.1016/j.physleta.2014.05.039 10.1016/S0034-4877(04)80012-0 10.1007/s00010-014-0296-0 10.1007/BF01818323 10.1017/S000497270900015X 10.1016/j.physleta.2013.08.017 10.5486/PMD.2012.5359 10.1016/0003-4916(90)90213-8 |
| ContentType | Journal Article |
| Copyright | 2017 Australian Mathematical Publishing Association Inc. |
| Copyright_xml | – notice: 2017 Australian Mathematical Publishing Association Inc. |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1017/S0004972717000910 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| DocumentTitleAlternate | W. Jia and D. Tan Wigner’s theorem |
| EISSN | 1755-1633 |
| EndPage | 284 |
| ExternalDocumentID | 10_1017_S0004972717000910 |
| GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 23N 2WC 4.4 5GY 5VS 6J9 6TJ 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABROB ABTAH ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACBMC ACDLN ACETC ACGFO ACGFS ACIMK ACMRT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEGXH AEHGV AEMFK AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AI. AIAGR AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KCGVB KFECR KWQ L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 P2P PTHSS PYCCK RAMDC RCA ROL RR0 S10 S6- S6U SAAAG T9M TN5 TWZ UPT UT1 VH1 WFFJZ WQ3 WXU WYP ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 AAKNA AAYXX ABXHF ACEJA ADXHL AFFHD AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT PQGLB 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2050-31d789989d761ae922b9af31ec6bfffc02f37199ceaa8877505d2979b277faf43 |
| IEDL.DBID | BENPR |
| ISSN | 0004-9727 |
| IngestDate | Fri Jul 25 11:47:07 EDT 2025 Sat Nov 29 03:58:51 EST 2025 Tue Nov 18 22:38:59 EST 2025 Tue Jan 21 06:20:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | L ∞ -type spaces Wigner’s theorem primary 46B03 phase equivalent secondary 46B04 |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2050-31d789989d761ae922b9af31ec6bfffc02f37199ceaa8877505d2979b277faf43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0151-1203 |
| OpenAccessLink | https://doi.org/10.1017/s0004972717000910 |
| PQID | 2787011193 |
| PQPubID | 5514771 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2787011193 crossref_primary_10_1017_S0004972717000910 crossref_citationtrail_10_1017_S0004972717000910 cambridge_journals_10_1017_S0004972717000910 |
| PublicationCentury | 2000 |
| PublicationDate | 20180400 2018-04-00 20180401 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 20180400 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Bulletin of the Australian Mathematical Society |
| PublicationTitleAlternate | Bull. Aust. Math. Soc |
| PublicationYear | 2018 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | S0004972717000910_r1 S0004972717000910_r11 S0004972717000910_r10 S0004972717000910_r2 Mazur (S0004972717000910_r5) 1932; 194 S0004972717000910_r12 S0004972717000910_r9 Huang (S0004972717000910_r3) S0004972717000910_r7 S0004972717000910_r8 S0004972717000910_r6 S0004972717000910_r4 |
| References_xml | – ident: S0004972717000910_r10 doi: 10.1016/j.physleta.2008.09.052 – ident: S0004972717000910_r6 doi: 10.1006/jfan.2002.3970 – ident: S0004972717000910_r3 article-title: Wigner’s theorem in atomic L p -spaces (p > 0) publication-title: Publ. Math. Debrecen – ident: S0004972717000910_r1 doi: 10.1016/j.physleta.2014.05.039 – ident: S0004972717000910_r2 doi: 10.1016/S0034-4877(04)80012-0 – volume: 194 start-page: 946 year: 1932 ident: S0004972717000910_r5 article-title: Sur les transformations isométriques d’espaces vectoriels normés publication-title: C. R. Math. Acad. Sci. Paris – ident: S0004972717000910_r12 doi: 10.1007/s00010-014-0296-0 – ident: S0004972717000910_r8 doi: 10.1007/BF01818323 – ident: S0004972717000910_r11 doi: 10.1017/S000497270900015X – ident: S0004972717000910_r7 doi: 10.1016/j.physleta.2013.08.017 – ident: S0004972717000910_r4 doi: 10.5486/PMD.2012.5359 – ident: S0004972717000910_r9 doi: 10.1016/0003-4916(90)90213-8 |
| SSID | ssj0045528 |
| Score | 2.1017992 |
| Snippet | We investigate surjective solutions of the functional equation
$$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 279 |
| SubjectTerms | Mathematical functions |
| Title | WIGNER’S THEOREM IN ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$ -TYPE SPACES |
| URI | https://www.cambridge.org/core/product/identifier/S0004972717000910/type/journal_article https://www.proquest.com/docview/2787011193 |
| Volume | 97 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1755-1633 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0045528 issn: 0004-9727 databaseCode: M7S dateStart: 20010201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1755-1633 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0045528 issn: 0004-9727 databaseCode: BENPR dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1755-1633 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0045528 issn: 0004-9727 databaseCode: M2P dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL2iaRdlwaO0ovQhL1i0FRbxeDyPFQrBIZGIa8WpCKrbyJ6HQEJJaVIEiiL1N_g9voSZ2E6pkLJh44U9I4187z33zOtcgJe5zQFMIlcrYiYoihKXCWLCXeJAYiZylotFsQkaRWww4HG54DYpj1VWmLgAajkWdo38NbKeZQKT-2-uvrm2apTdXS1LaKzBulUqwzVYfxtGca_CYhwEqMDiOna5SdXVvuZCNNqyY_POKtTZrPm3usL9LHUfpBeZp_X4f8f8BB6VnNNpFE7yFB6o0RY87C4FWyfP4Oxj530U9n7f_kqcfjs87YVdpxM56dEsNU0-G0POPsznl7PUOOT0pzM_Su2tkrFU50m_M7iY_fDekRDPj9Njt_8pDp0kbjTDZBvOWmG_2XbLiguuQPXAArKkdgLGJSVepjhCOc-07ylBcq21qCPtU49zobLMoJNhG4FEnPIcUaozjf0dqI3GI_UcnJwYYskNAcKcYOEFTEjENPMFJtrHGu_Cq-XfHpZxMxkWZ87o8B_j7EK9MshQlOrltojG11VdTpZdrgrpjlWN9ysT3o3mzn4vVn_eg01DpFhxomcfatPrG3UAG-L79Mvk-rB0ykNY66LYPmnyBy-H42c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQlY8K5oacELkFqE1WQ8tmcWqKpal1hNTNS4ahBujT0PgVQlpQmPKorU3-hP8FF8CXfsOKVCyq4LtvaMZXvOuY95nAvwMjc-gElia-VhgqJ8z2bCQ7pL6krKRM5yURSb8KOIdbu8PQe_qrMwZltlZRMLQy37wsyRrxODLCQmdzZOvtqmapRZXa1KaJSw2FVnPzBlG7wNt3F8XxGyE8RbDXtSVcAWpOYaoyN9k2RwiRl8pjghOc-0U1fCy7XWoka049c5FyrLkIHoUV1JuM9z4vs609TB596AmxQzIcOrFmlXlp-6Liktf43aHAODahW1kKg2sTheM3p4xkf_reVw1SdedQmFn9u5_7_9oQdwbxJRW5slBR7CnOo9grutqRzt4DHsH4TvomDv9_lFx4obwfu9oGWFkZWsjhJs8hlhOmqOx0ejBOk2PLPGq4k5M9OX6mMnDruHo5_1bS-g47VkzY4_tAOr097cCjpPYP9avmsB5nv9nnoKVu5h2MwxvKPco6LuMiEJ08wR1NMO1XQR3kxHN51YhUFa7qjz03_AsAi1CgCpmGizmxIhx7O6vJ52OSmFSWY1Xq4gc_k2l3hZmn37BdxuxK1m2gyj3WdwB0NGVu5dWob54ek3tQK3xPfhl8Hp84IOFny6bnT9Aa9NPIM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VghA8cEcUCvgBpBZhNVmvvbsPCFWNQ622JqpTEYTB2HsRSCgpTbhUUSR-g1_hc_gSZn1JqZDy1gdeba9le8_MOeOdnQF4VFgO4Iq4RgcYoGgWuFwGaO6K-opyWfBCls0mWBzzwUD0luBXsxfGplU2PrF01Gok7T_yDWKRhYYpvA1Tp0X0Ot3nh59d20HKrrQ27TQqiOzo428Yvo2fRR2c68eEdMP-1rZbdxhwJWn51gEpZgMOoTCaz7UgpBC58dpaBoUxRraI8VhbCKnzHK0R2dVXRDBREMZMbqiH9z0H5xlFnVCmDSYNC1DfJxULtKgrUCQ0K6pluWqry_GYrY1n-frvug6n-fE0PZSc1736P3-ta3ClVtrOZmUa12FJD2_A5b15mdrxTTh4Fb2Iw_3fP34mTn87fLkf7jlR7KRr0xQv-YDwne7OZu-mKZrh5NiZraV2L81I6TdJPxq8nX5vd4KQztbTdbf_uhc6SW9zK0xuwcGZvNdtWB6OhvoOOEWAclqg7KMioLLtc6kIN9yTNDAeNXQFns5nOqu9xTirMu1Y9g8wVqDVgCGTdc122zrk06IhT-ZDDquCJYsuXm3gc_I0J9i5u_j0Q7iIoMp2o3jnHlxCJcmrlKZVWJ4cfdH34YL8Ovk4PnpQWoYD788aXH8AltlFUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WIGNER%E2%80%99S+THEOREM+IN+%24%7B%5Cmathcal%7BL%7D%7D%5E%7B%5Cinfty+%7D%28%5Cunicode%5BSTIX%5D%7Bx1D6E4%7D%29%24+-TYPE+SPACES&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=JIA%2C+WEIKE&rft.au=TAN%2C+DONGNI&rft.date=2018-04-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=97&rft.issue=2&rft.spage=279&rft.epage=284&rft_id=info:doi/10.1017%2FS0004972717000910&rft.externalDocID=10_1017_S0004972717000910 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon |