Scheduling moldable tasks on homogeneous multi-cluster platforms with GPUs

This paper examines task scheduling in homogeneous multi-cluster platforms, equipped with Graphics Processing Units (GPUs), with the aim of minimizing the makespan. We assume that tasks can be parallelized across these platforms under the moldable model. Recognizing the NP-hard nature of the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 179; S. 107041
Hauptverfasser: Wu, Fangfang, Zhang, Run, Zhang, Xiandong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2025
Schlagworte:
ISSN:0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines task scheduling in homogeneous multi-cluster platforms, equipped with Graphics Processing Units (GPUs), with the aim of minimizing the makespan. We assume that tasks can be parallelized across these platforms under the moldable model. Recognizing the NP-hard nature of the problem, our goal is to develop algorithms that provide approximation ratios. While existing research has established algorithms for single-cluster GPU environments, scaling these to multi-cluster platforms introduces new challenges, especially due to the restriction that tasks cannot use processors from different clusters. We propose an integer programming-based algorithm that achieves an approximation ratio of 32+ϵ, trading off runtime for an improved approximation ratio. Additionally, leveraging recent theoretical advancements, we have created a polynomial-time algorithm with an approximation ratio of 2+ϵ. Empirical computational experiments show that our algorithms surpass their counterparts in empirical approximation ratios.
ISSN:0305-0548
DOI:10.1016/j.cor.2025.107041