Fine-Tuning CNN-BiGRU for Intrusion Detection with SMOTE Optimization Using Optuna

Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations. This resea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Salud, Ciencia y Tecnología - Serie de Conferencias Jg. 3; H. 3; S. 968
Hauptverfasser: BENCHAMA, Asmaa, ZEBBARA, Khalid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 2024
Schlagworte:
ISSN:2953-4860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations. This research aims to enhance intrusion detection using Deep learning techniques, particularly by employing the NSLKDD dataset to train and evaluate a hybrid CNN-BiGRU algorithm. Additionally, we utilize the Synthetic Minority Over-sampling Technique (SMOTE) to address imbalanced data and Optuna for fine-tuning the algorithm's parameters specific to NIDS requirements. The hybrid CNN-BiGRU algorithm is trained and evaluated on the NSLKDD dataset, incorporating SMOTE to tackle imbalanced data issues. Optuna is utilized to optimize the algorithm's parameters for improved performance in intrusion detection. Experimental results demonstrate that our approach surpasses classical intrusion detection models. Achieving an accuracy rate of 98,83 % on NSLKDD, the proposed model excels in identifying minority attacks while maintaining a low false positive rate. The findings affirm the efficacy of our proposed approach in network intrusion detection, showcasing its ability to effectively discern patterns in network traffic and outperform traditional models
AbstractList Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations. This research aims to enhance intrusion detection using Deep learning techniques, particularly by employing the NSLKDD dataset to train and evaluate a hybrid CNN-BiGRU algorithm. Additionally, we utilize the Synthetic Minority Over-sampling Technique (SMOTE) to address imbalanced data and Optuna for fine-tuning the algorithm's parameters specific to NIDS requirements. The hybrid CNN-BiGRU algorithm is trained and evaluated on the NSLKDD dataset, incorporating SMOTE to tackle imbalanced data issues. Optuna is utilized to optimize the algorithm's parameters for improved performance in intrusion detection. Experimental results demonstrate that our approach surpasses classical intrusion detection models. Achieving an accuracy rate of 98,83 % on NSLKDD, the proposed model excels in identifying minority attacks while maintaining a low false positive rate. The findings affirm the efficacy of our proposed approach in network intrusion detection, showcasing its ability to effectively discern patterns in network traffic and outperform traditional models
Author ZEBBARA, Khalid
BENCHAMA, Asmaa
Author_xml – sequence: 1
  givenname: Asmaa
  surname: BENCHAMA
  fullname: BENCHAMA, Asmaa
– sequence: 2
  givenname: Khalid
  surname: ZEBBARA
  fullname: ZEBBARA, Khalid
BookMark eNpVkM1OAjEYRbvARFTWbucFRjr9b-IGEZAEIcFh3XRKR2ugJW2J0aeXHzVxdb-c5HzJvVeg44O3ANxW8I4yJEk_mWyCbxFERDLRAV0kKS6JYPAS9FJyDaSYI46Z6ILl2Hlb1nvv_GsxnM_LBzdZroo2xGLqc9wnF3zxaLM1-Xh9uPxWvDwv6lGx2GW3dV_6xFfp6B_Q3usbcNHqTbK9n7wGq_GoHj6Vs8VkOhzMSoMgESXWXGuJjJCUNwxZKdaCQFHJCjct5JhzRLERHDcNEkwzsWawJYJSTKTGWuJrcH_-u3Z6421Wu-i2On6qoJ36ZYdi0YV3rWxSg2UNIaw4YlDig94_6yaGlKJt__wKqtOQ6v-Q-Bv4Z2qQ
Cites_doi 10.1109/TNSM.2020.3024225
10.1016/j.procs.2022.03.029
10.1109/ACCESS.2017.2762418
10.14569/IJACSA.2016.070419
10.1109/ICAIC60265.2024.10443675
10.3390/electronics12204260
10.3390/electronics12132849
10.56294/sctconf2024702
10.1016/j.iot.2023.100709
10.3390/electronics11060898
10.1007/s10489-022-03361-2
10.3390/electronics12194170
10.1016/j.neunet.2021.01.001
10.1016/j.jnca.2021.103160
10.1145/3292500.3330701
10.1109/ACCESS.2019.2895334
ContentType Journal Article
Copyright LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Copyright_xml – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
DBID AAYXX
CITATION
AGMXS
FKZ
DOI 10.56294/sctconf2024968
DatabaseName CrossRef
Dialnet (Open Access Full Text)
Dialnet
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_dialnet_unirioja_es_ART0001726093
10_56294_sctconf2024968
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
AGMXS
FKZ
ID FETCH-LOGICAL-c2048-3a7aa92c8957b62e98d84081913bf07377253c873bb286a68d60f4855349a3a93
ISSN 2953-4860
IngestDate Sun Jan 05 03:21:39 EST 2025
Sat Nov 29 01:40:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2048-3a7aa92c8957b62e98d84081913bf07377253c873bb286a68d60f4855349a3a93
OpenAccessLink https://dialnet.unirioja.es/servlet/oaiart?codigo=9872226
ParticipantIDs dialnet_primary_oai_dialnet_unirioja_es_ART0001726093
crossref_primary_10_56294_sctconf2024968
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Salud, Ciencia y Tecnología - Serie de Conferencias
PublicationYear 2024
References 27986
27987
27984
27995
27985
27996
27979
27977
27988
27978
27989
27990
27982
27993
27983
27994
27980
27991
27981
27992
References_xml – ident: 27989
  doi: 10.1109/TNSM.2020.3024225
– ident: 27977
  doi: 10.1016/j.procs.2022.03.029
– ident: 27979
  doi: 10.1109/ACCESS.2017.2762418
– ident: 27983
– ident: 27995
  doi: 10.14569/IJACSA.2016.070419
– ident: 27984
  doi: 10.1109/ICAIC60265.2024.10443675
– ident: 27987
  doi: 10.3390/electronics12204260
– ident: 27993
  doi: 10.3390/electronics12132849
– ident: 27978
  doi: 10.56294/sctconf2024702
– ident: 27982
  doi: 10.1016/j.iot.2023.100709
– ident: 27985
– ident: 27994
  doi: 10.3390/electronics11060898
– ident: 27980
  doi: 10.1007/s10489-022-03361-2
– ident: 27992
  doi: 10.3390/electronics12194170
– ident: 27991
  doi: 10.1016/j.neunet.2021.01.001
– ident: 27990
– ident: 27988
  doi: 10.1016/j.jnca.2021.103160
– ident: 27981
  doi: 10.1145/3292500.3330701
– ident: 27996
– ident: 27986
  doi: 10.1109/ACCESS.2019.2895334
SSID ssib053727368
Score 2.2424119
Snippet Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection...
SourceID dialnet
crossref
SourceType Open Website
Index Database
StartPage 968
SubjectTerms BIGRU
CNN
Hyper
NIDS
NSLKDD
Parameters Optimizer
Smote
Title Fine-Tuning CNN-BiGRU for Intrusion Detection with SMOTE Optimization Using Optuna
URI https://dialnet.unirioja.es/servlet/oaiart?codigo=9872226
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2953-4860
  databaseCode: M~E
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib053727368
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Ra9RAEMcXrQp9EUXFWpV98EE4FnO72WT3sXdNrUhTuV6h-BI2mz2M2LT07qS--Nmd2U3SXEGoD76EsIS5sL_jn5lJZoaQdzaK7NiNLeM2ESxO1JiZSpZMuIUupbTC6tIPm0jzXJ2d6S9t7cnSjxNIm0ZdX-vL_4oa1gA2ls7-A-7eKCzAOUCHI2CH453AH4DfyOZrn--Y5jmb1B9np_5rwk8NVlgg7323cmFGuM_Dnhwdz7PRMajHeVuWOQqfEsDSOozX7hzYE_Nj7f8UU9SE2ox-YXbeJ-f9O_d9M2IoQDXWY93UE9bmJh2f5dNDTOyjKi3PTf9c-JpNJnszv_75G4QH1TAjEUqgg2RxLQG4ChMCOn0VA33UYYbObd0GJ0zHftTkysKNodH2ys0O2beeXP33hBDJeBPFpoH75AFPZYpid_Q762RGCvTZfJFkf7-h6ZO38WHTxoa_8giLeRq3Grgg8yfkcRs70L3A_Cm555pnZDbgTXveFHjTnjfteVPkTT1vOuRNPW8aeD8npwfZfHrI2kEZzGLfZSZMaozmVmmZlgl3WlUQt2MoLsoFaDhEUFJYlYqy5CoxiaqSaIFdgUSsjTBavCBbzUXjXhIacRtVRnEnhI55bLVecIgonVMKXOmx3SHvu-0oLkM_lOIvu79DZLtd_ZXYy7xbg325qi--m8ItC4jdfOcmCK61eHX3n9gl23gWUmKvyRbsqntDHtqfq3p59dZT_wNJ-mmr
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Tuning+CNN-BiGRU+for+Intrusion+Detection+with+SMOTE+Optimization+Using+Optuna&rft.jtitle=Salud%2C+Ciencia+y+Tecnolog%C3%ADa+-+Serie+de+Conferencias&rft.au=BENCHAMA%2C+Asmaa&rft.au=ZEBBARA%2C+Khalid&rft.date=2024&rft.issn=2953-4860&rft.volume=3&rft.spage=968&rft_id=info:doi/10.56294%2Fsctconf2024968&rft.externalDBID=n%2Fa&rft.externalDocID=10_56294_sctconf2024968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2953-4860&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2953-4860&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2953-4860&client=summon