Fine-Tuning CNN-BiGRU for Intrusion Detection with SMOTE Optimization Using Optuna
Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations. This resea...
Gespeichert in:
| Veröffentlicht in: | Salud, Ciencia y Tecnología - Serie de Conferencias Jg. 3; H. 3; S. 968 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
2024
|
| Schlagworte: | |
| ISSN: | 2953-4860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations.
This research aims to enhance intrusion detection using Deep learning techniques, particularly by employing the NSLKDD dataset to train and evaluate a hybrid CNN-BiGRU algorithm. Additionally, we utilize the Synthetic Minority Over-sampling Technique (SMOTE) to address imbalanced data and Optuna for fine-tuning the algorithm's parameters specific to NIDS requirements.
The hybrid CNN-BiGRU algorithm is trained and evaluated on the NSLKDD dataset, incorporating SMOTE to tackle imbalanced data issues. Optuna is utilized to optimize the algorithm's parameters for improved performance in intrusion detection.
Experimental results demonstrate that our approach surpasses classical intrusion detection models. Achieving an accuracy rate of 98,83 % on NSLKDD, the proposed model excels in identifying minority attacks while maintaining a low false positive rate.
The findings affirm the efficacy of our proposed approach in network intrusion detection, showcasing its ability to effectively discern patterns in network traffic and outperform traditional models |
|---|---|
| AbstractList | Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection Systems (NIDS) are vital for protecting network traffic and preempting potential attacks by identifying signatures and rule violations.
This research aims to enhance intrusion detection using Deep learning techniques, particularly by employing the NSLKDD dataset to train and evaluate a hybrid CNN-BiGRU algorithm. Additionally, we utilize the Synthetic Minority Over-sampling Technique (SMOTE) to address imbalanced data and Optuna for fine-tuning the algorithm's parameters specific to NIDS requirements.
The hybrid CNN-BiGRU algorithm is trained and evaluated on the NSLKDD dataset, incorporating SMOTE to tackle imbalanced data issues. Optuna is utilized to optimize the algorithm's parameters for improved performance in intrusion detection.
Experimental results demonstrate that our approach surpasses classical intrusion detection models. Achieving an accuracy rate of 98,83 % on NSLKDD, the proposed model excels in identifying minority attacks while maintaining a low false positive rate.
The findings affirm the efficacy of our proposed approach in network intrusion detection, showcasing its ability to effectively discern patterns in network traffic and outperform traditional models |
| Author | ZEBBARA, Khalid BENCHAMA, Asmaa |
| Author_xml | – sequence: 1 givenname: Asmaa surname: BENCHAMA fullname: BENCHAMA, Asmaa – sequence: 2 givenname: Khalid surname: ZEBBARA fullname: ZEBBARA, Khalid |
| BookMark | eNpVkM1OAjEYRbvARFTWbucFRjr9b-IGEZAEIcFh3XRKR2ugJW2J0aeXHzVxdb-c5HzJvVeg44O3ANxW8I4yJEk_mWyCbxFERDLRAV0kKS6JYPAS9FJyDaSYI46Z6ILl2Hlb1nvv_GsxnM_LBzdZroo2xGLqc9wnF3zxaLM1-Xh9uPxWvDwv6lGx2GW3dV_6xFfp6B_Q3usbcNHqTbK9n7wGq_GoHj6Vs8VkOhzMSoMgESXWXGuJjJCUNwxZKdaCQFHJCjct5JhzRLERHDcNEkwzsWawJYJSTKTGWuJrcH_-u3Z6421Wu-i2On6qoJ36ZYdi0YV3rWxSg2UNIaw4YlDig94_6yaGlKJt__wKqtOQ6v-Q-Bv4Z2qQ |
| Cites_doi | 10.1109/TNSM.2020.3024225 10.1016/j.procs.2022.03.029 10.1109/ACCESS.2017.2762418 10.14569/IJACSA.2016.070419 10.1109/ICAIC60265.2024.10443675 10.3390/electronics12204260 10.3390/electronics12132849 10.56294/sctconf2024702 10.1016/j.iot.2023.100709 10.3390/electronics11060898 10.1007/s10489-022-03361-2 10.3390/electronics12194170 10.1016/j.neunet.2021.01.001 10.1016/j.jnca.2021.103160 10.1145/3292500.3330701 10.1109/ACCESS.2019.2895334 |
| ContentType | Journal Article |
| Copyright | LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
| Copyright_xml | – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
| DBID | AAYXX CITATION AGMXS FKZ |
| DOI | 10.56294/sctconf2024968 |
| DatabaseName | CrossRef Dialnet (Open Access Full Text) Dialnet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| ExternalDocumentID | oai_dialnet_unirioja_es_ART0001726093 10_56294_sctconf2024968 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E AGMXS FKZ |
| ID | FETCH-LOGICAL-c2048-3a7aa92c8957b62e98d84081913bf07377253c873bb286a68d60f4855349a3a93 |
| ISSN | 2953-4860 |
| IngestDate | Sun Jan 05 03:21:39 EST 2025 Sat Nov 29 01:40:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2048-3a7aa92c8957b62e98d84081913bf07377253c873bb286a68d60f4855349a3a93 |
| OpenAccessLink | https://dialnet.unirioja.es/servlet/oaiart?codigo=9872226 |
| ParticipantIDs | dialnet_primary_oai_dialnet_unirioja_es_ART0001726093 crossref_primary_10_56294_sctconf2024968 |
| PublicationCentury | 2000 |
| PublicationDate | 2024 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Salud, Ciencia y Tecnología - Serie de Conferencias |
| PublicationYear | 2024 |
| References | 27986 27987 27984 27995 27985 27996 27979 27977 27988 27978 27989 27990 27982 27993 27983 27994 27980 27991 27981 27992 |
| References_xml | – ident: 27989 doi: 10.1109/TNSM.2020.3024225 – ident: 27977 doi: 10.1016/j.procs.2022.03.029 – ident: 27979 doi: 10.1109/ACCESS.2017.2762418 – ident: 27983 – ident: 27995 doi: 10.14569/IJACSA.2016.070419 – ident: 27984 doi: 10.1109/ICAIC60265.2024.10443675 – ident: 27987 doi: 10.3390/electronics12204260 – ident: 27993 doi: 10.3390/electronics12132849 – ident: 27978 doi: 10.56294/sctconf2024702 – ident: 27982 doi: 10.1016/j.iot.2023.100709 – ident: 27985 – ident: 27994 doi: 10.3390/electronics11060898 – ident: 27980 doi: 10.1007/s10489-022-03361-2 – ident: 27992 doi: 10.3390/electronics12194170 – ident: 27991 doi: 10.1016/j.neunet.2021.01.001 – ident: 27990 – ident: 27988 doi: 10.1016/j.jnca.2021.103160 – ident: 27981 doi: 10.1145/3292500.3330701 – ident: 27996 – ident: 27986 doi: 10.1109/ACCESS.2019.2895334 |
| SSID | ssib053727368 |
| Score | 2.2424119 |
| Snippet | Network security faces a significant challenge in developing effective models for intrusion detection within network systems. Network Intrusion Detection... |
| SourceID | dialnet crossref |
| SourceType | Open Website Index Database |
| StartPage | 968 |
| SubjectTerms | BIGRU CNN Hyper NIDS NSLKDD Parameters Optimizer Smote |
| Title | Fine-Tuning CNN-BiGRU for Intrusion Detection with SMOTE Optimization Using Optuna |
| URI | https://dialnet.unirioja.es/servlet/oaiart?codigo=9872226 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2953-4860 databaseCode: M~E dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib053727368 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Ra9RAEMcXrQp9EUXFWpV98EE4FnO72WT3sXdNrUhTuV6h-BI2mz2M2LT07qS--Nmd2U3SXEGoD76EsIS5sL_jn5lJZoaQdzaK7NiNLeM2ESxO1JiZSpZMuIUupbTC6tIPm0jzXJ2d6S9t7cnSjxNIm0ZdX-vL_4oa1gA2ls7-A-7eKCzAOUCHI2CH453AH4DfyOZrn--Y5jmb1B9np_5rwk8NVlgg7323cmFGuM_Dnhwdz7PRMajHeVuWOQqfEsDSOozX7hzYE_Nj7f8UU9SE2ox-YXbeJ-f9O_d9M2IoQDXWY93UE9bmJh2f5dNDTOyjKi3PTf9c-JpNJnszv_75G4QH1TAjEUqgg2RxLQG4ChMCOn0VA33UYYbObd0GJ0zHftTkysKNodH2ys0O2beeXP33hBDJeBPFpoH75AFPZYpid_Q762RGCvTZfJFkf7-h6ZO38WHTxoa_8giLeRq3Grgg8yfkcRs70L3A_Cm555pnZDbgTXveFHjTnjfteVPkTT1vOuRNPW8aeD8npwfZfHrI2kEZzGLfZSZMaozmVmmZlgl3WlUQt2MoLsoFaDhEUFJYlYqy5CoxiaqSaIFdgUSsjTBavCBbzUXjXhIacRtVRnEnhI55bLVecIgonVMKXOmx3SHvu-0oLkM_lOIvu79DZLtd_ZXYy7xbg325qi--m8ItC4jdfOcmCK61eHX3n9gl23gWUmKvyRbsqntDHtqfq3p59dZT_wNJ-mmr |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Tuning+CNN-BiGRU+for+Intrusion+Detection+with+SMOTE+Optimization+Using+Optuna&rft.jtitle=Salud%2C+Ciencia+y+Tecnolog%C3%ADa+-+Serie+de+Conferencias&rft.au=BENCHAMA%2C+Asmaa&rft.au=ZEBBARA%2C+Khalid&rft.date=2024&rft.issn=2953-4860&rft.volume=3&rft.spage=968&rft_id=info:doi/10.56294%2Fsctconf2024968&rft.externalDBID=n%2Fa&rft.externalDocID=10_56294_sctconf2024968 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2953-4860&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2953-4860&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2953-4860&client=summon |