Computing Puiseux series: a fast divide and conquer algorithm

Let F ∈ [ X , Y ] be a polynomial of total degree D defined over a perfect field of characteristic zero or greater than D . Assuming F separable with respect to Y , we provide an algorithm that computes all singular parts of Puiseux series of F above X = 0 in an expected Ø ˜ ( D δ ) operations in ,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annales Henri Lebesgue Ročník 4; s. 1061 - 1102
Hlavní autoři: Poteaux, Adrien, Weimann, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: UFR de Mathématiques - IRMAR 2021
Témata:
ISSN:2644-9463, 2644-9463
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let F ∈ [ X , Y ] be a polynomial of total degree D defined over a perfect field of characteristic zero or greater than D . Assuming F separable with respect to Y , we provide an algorithm that computes all singular parts of Puiseux series of F above X = 0 in an expected Ø ˜ ( D δ ) operations in , where δ is the valuation of the resultant of F and its partial derivative with respect to Y . To this aim, we use a divide and conquer strategy and replace univariate factorisation by dynamic evaluation. As a first main corollary, we compute the irreducible factors of F in [ [ X ] ] [ Y ] up to an arbitrary precision X N with Ø ˜ ( D ( δ + N ) ) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by F with Ø ˜ ( D 3 ) arithmetic operations and, if = ℚ , with Ø ˜ ( ( h + 1 ) D 3 ) bit operations using probabilistic algorithms, where h is the logarithmic height of F .
AbstractList Let $F ∈ K[X, Y ]$ be a polynomial of total degree D defined over a field K of characteristic zero or greater than D. Assuming F separable with respect to Y , we provide an algorithm that computes all Puiseux series of F above X = 0 in less than $O˜(D δ)$ operations in K, where δ is the valuation of the resultant of F and its partial derivative with respect to Y. To this aim, we use a divide and conquer strategy and replace univariate factorisation by dynamic evaluation. As a first main corollary, we compute the irreducible factors of F in $K[[X]][Y ]$ up to an arbitrary precision X N with $O˜(D(δ + N))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by F with $O˜(D^3)$ arithmetic operations and, if K = Q, with $O˜((h+1) D^3)$ bit operations using probabilistic algorithms, where h is the logarithmic height of F .
Let F ∈ [ X , Y ] be a polynomial of total degree D defined over a perfect field of characteristic zero or greater than D . Assuming F separable with respect to Y , we provide an algorithm that computes all singular parts of Puiseux series of F above X = 0 in an expected Ø ˜ ( D δ ) operations in , where δ is the valuation of the resultant of F and its partial derivative with respect to Y . To this aim, we use a divide and conquer strategy and replace univariate factorisation by dynamic evaluation. As a first main corollary, we compute the irreducible factors of F in [ [ X ] ] [ Y ] up to an arbitrary precision X N with Ø ˜ ( D ( δ + N ) ) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by F with Ø ˜ ( D 3 ) arithmetic operations and, if = ℚ , with Ø ˜ ( ( h + 1 ) D 3 ) bit operations using probabilistic algorithms, where h is the logarithmic height of F .
Author Poteaux, Adrien
Weimann, Martin
Author_xml – sequence: 1
  givenname: Adrien
  surname: Poteaux
  fullname: Poteaux, Adrien
– sequence: 2
  givenname: Martin
  surname: Weimann
  fullname: Weimann, Martin
BackLink https://inria.hal.science/hal-01578214$$DView record in HAL
BookMark eNpdkFFLwzAUhYNMcM75G_IkCHamadq0gg9jqBMK-qDP4Ta53SJdM5N26L-3YyIy7sO5HL5zHs45GbWuRUIuYzZLc8ZvYd3MCnlCxjwTIipEloz-_WdkGsIHY4znUjDBx-R-4TbbvrPtir72NmD_RQN6i-GOAq0hdNTYnTVIoTVUu_azR0-hWTlvu_XmgpzW0ASc_uqEvD8-vC2WUfny9LyYl5HmTMhICKgrYfaXaiN1liQmAR2zGDmkUlQ1AykgS6u8wEENx5SzmmdoTGGwSibk-tC7hkZtvd2A_1YOrFrOS7X3WJzKnMdilwzs1YHV3oXgsf4LxEztN1LDRqqQA3hzBGrbQWdd23mwzTH-Azx2ajU
CitedBy_id crossref_primary_10_1007_s00200_024_00669_z
crossref_primary_10_3390_math11102324
crossref_primary_10_1016_j_jco_2022_101666
crossref_primary_10_1007_s00037_022_00221_w
crossref_primary_10_1007_s10208_024_09646_x
Cites_doi 10.1017/CBO9781139856065
10.1007/BF03167329
10.1145/1390768.1390802
10.1145/1113439.1113457
10.1007/s00208-016-1503-1
10.1016/j.jco.2020.101498
10.1007/BF01178683
10.1145/322063.322068
10.1007/s10208-016-9318-8
10.1007/s00037-013-0063-y
10.1112/S1461157013000089
10.1007/s00200-011-0144-6
10.1145/2755996.2756650
10.1016/j.jsc.2012.05.008
10.1007/BF02242355
10.1006/jcom.1998.0476
10.1090/surv/035
10.1145/2930889.2930931
10.1145/2608628.2608664
10.1007/978-3-0348-5097-1
10.1145/42267.45069
10.1007/3-540-15984-3
10.1145/3055282.3055300
10.1006/jsco.2002.0564
10.1016/0001-8708(89)90009-1
10.1090/surv/006
10.1145/3087604.3087658
10.1016/j.jco.2019.03.002
10.1006/jsco.1994.1025
10.1007/978-1-4612-0265-3
10.1016/j.jsc.2011.08.008
10.1017/CBO9781139171885
10.1145/321879.321890
10.1016/0196-6774(80)90013-9
ContentType Journal Article
Copyright Attribution - NonCommercial - ShareAlike
Copyright_xml – notice: Attribution - NonCommercial - ShareAlike
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.5802/ahl.97
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 2644-9463
EndPage 1102
ExternalDocumentID oai:HAL:hal-01578214v3
10_5802_ahl_97
GroupedDBID AAFWJ
AAYXX
ADRWJ
AEXTA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
SDR
1XC
VOOES
ID FETCH-LOGICAL-c2047-44afb4d4d4d5cd7c633d3ac101e2a574bf0a74a65b89e4a6d2e520f26edd9deb3
ISSN 2644-9463
IngestDate Tue Oct 14 20:46:56 EDT 2025
Thu Oct 16 04:30:41 EDT 2025
Tue Nov 18 21:28:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords complexity
Puiseux series
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2047-44afb4d4d4d5cd7c633d3ac101e2a574bf0a74a65b89e4a6d2e520f26edd9deb3
OpenAccessLink http://dx.doi.org/10.5802/ahl.97
PageCount 42
ParticipantIDs hal_primary_oai_HAL_hal_01578214v3
crossref_primary_10_5802_ahl_97
crossref_citationtrail_10_5802_ahl_97
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationTitle Annales Henri Lebesgue
PublicationYear 2021
Publisher UFR de Mathématiques - IRMAR
Publisher_xml – name: UFR de Mathématiques - IRMAR
References Poteaux, Adrien (key2025101010341002323_31) 2011; 22
Duval, Dominique (key2025101010341002323_14) 2016; 50
García Barroso, Evelia Rosa (key2025101010341002323_19) 2017; 368
van der Hoeven, Joris (key2025101010341002323_24) 2019; 55
Teissier, Bernard (key2025101010341002323_39) 1974; 1973
Le Gall, François (key2025101010341002323_26) 2014
Brieskorn, Egbert (key2025101010341002323_6) 1986
Cantor, David (key2025101010341002323_11) 1991; 28
Abhyankar, Shreeram S. (key2025101010341002323_2) 1989; 74
Poteaux, Adrien (key2025101010341002323_36) 2013; 50
Abhyankar, Shreeram S. (key2025101010341002323_3) 1990; 35
Poteaux, Adrien (key2025101010341002323_32) 2012; 47
Weimann, Martin (key2025101010341002323_41) 2016; 17
Kako, Fujio (key2025101010341002323_22) 1999; 16
Pascal, Cyril (key2025101010341002323_34) 2006
Musser, David R. (key2025101010341002323_28) 1975; 22
Huang, Xiaohan (key2025101010341002323_20) 1998; 14
Brent, Richard P. (key2025101010341002323_5) 1980; 1
Poteaux, Adrien (key2025101010341002323_33) 2015
Bauch, Jens-Dietrich (key2025101010341002323_7) 2013; 16
Bini, Dario (key2025101010341002323_8) 1994
Peral, Jesús Montes (key2025101010341002323_29) 1999
Shoup, Victor (key2025101010341002323_37) 1994; 17
Chevalley, Claude (key2025101010341002323_10) 1951; 6
Cassel, John W. S. (key2025101010341002323_9) 1986; 3
Duval, Dominique (key2025101010341002323_16) 1989; 70
von zur Gathen, Joachim von zur (key2025101010341002323_18) 2013
Bostan, Alin (key2025101010341002323_4) 2007
Poteaux, Adrien (key2025101010341002323_35) 2013; 22
Dahan, Xavier (key2025101010341002323_15) 2005; 39
Eichler, Martin (key2025101010341002323_17) 1966
Poteaux, Adrien (key2025101010341002323_30) 2008
van der Hoeven, Joris (key2025101010341002323_25) 2020; 60
Cormier, Olivier (key2025101010341002323_12) 2002; 34
Walker, Robert J. (key2025101010341002323_40) 1950; 13
Moroz, Guillaume (key2025101010341002323_27) 2016
Alvandi, Parisa (key2025101010341002323_1) 2017
Schönage, Arnold (key2025101010341002323_38) 1971; 7
Dora, Jean Della (key2025101010341002323_13) 1985; 204
Kaltofen, Erich (key2025101010341002323_21) 1988; 35
Kung, H. T. (key2025101010341002323_23) 1978; 25
References_xml – year: 2013
  ident: key2025101010341002323_18
  publication-title: Modern Computer Algebra
  doi: 10.1017/CBO9781139856065
– volume: 16
  start-page: 257
  year: 1999
  ident: key2025101010341002323_22
  article-title: Solving Multivariate Algebraic Equations by Hensel Construction
  publication-title: Japan J. Ind. Appl. Math.
  doi: 10.1007/BF03167329
– start-page: 239
  year: 2008
  ident: key2025101010341002323_30
  article-title: Good reduction of Puiseux series and complexity of the Newton–Puiseux algorithm over finite fields
  publication-title: ISSAC ’08: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation
  doi: 10.1145/1390768.1390802
– volume: 39
  start-page: 97
  issue: 3
  year: 2005
  ident: key2025101010341002323_15
  article-title: On the complexity of the D5 principle
  publication-title: SIGSAM Bull.
  doi: 10.1145/1113439.1113457
– volume: 368
  start-page: 1359
  issue: 3
  year: 2017
  ident: key2025101010341002323_19
  article-title: Variations on inversion theorems for Newton–Puiseux series
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1503-1
– volume: 60
  year: 2020
  ident: key2025101010341002323_25
  article-title: Directed evaluation
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2020.101498
– volume: 28
  start-page: 693
  issue: 7
  year: 1991
  ident: key2025101010341002323_11
  article-title: On fast multiplication of polynomials over arbitrary algebras
  publication-title: Acta Inf.
  doi: 10.1007/BF01178683
– start-page: 277
  year: 2006
  ident: key2025101010341002323_34
  article-title: Change of order for bivariate triangular sets
  publication-title: Proceedings of the 2006 international symposium on symbolic and algebraic computation, ISSAC 06, Genova, Italy, July 9–12, 2006
– volume: 25
  start-page: 245
  issue: 2
  year: 1978
  ident: key2025101010341002323_23
  article-title: All algebraic functions can be computed fast
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/322063.322068
– volume: 17
  start-page: 1219
  issue: 5
  year: 2016
  ident: key2025101010341002323_41
  article-title: Bivariate Factorization Using a Critical Fiber
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-016-9318-8
– volume: 22
  start-page: 463
  issue: 3
  year: 2013
  ident: key2025101010341002323_35
  article-title: Modular Composition Modulo Triangular Sets and Applications
  publication-title: Comput. Complexity
  doi: 10.1007/s00037-013-0063-y
– volume: 16
  start-page: 139
  year: 2013
  ident: key2025101010341002323_7
  article-title: Complexity of the OM Factorizations of Polynomials over Local Fields
  publication-title: LMS J. Comput. Math.
  doi: 10.1112/S1461157013000089
– volume: 22
  start-page: 187
  issue: 3
  year: 2011
  ident: key2025101010341002323_31
  article-title: Complexity bounds for the rational Newton–Puiseux algorithm over finite fields
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s00200-011-0144-6
– start-page: 299
  year: 2015
  ident: key2025101010341002323_33
  article-title: Improving complexity bounds for the computation of Puiseux series over finite fields
  publication-title: Proceedings of the 40th international symposium on symbolic and algebraic computation, ISSAC 2015, Bath, UK, July 6–9, 2015
  doi: 10.1145/2755996.2756650
– volume: 50
  start-page: 110
  year: 2013
  ident: key2025101010341002323_36
  article-title: On the complexity of computing with zero-dimensional triangular sets
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.05.008
– volume: 7
  start-page: 281
  year: 1971
  ident: key2025101010341002323_38
  article-title: Fast multiplication of large numbers. (Schnelle Multiplikation großer Zahlen)
  publication-title: Computing
  doi: 10.1007/BF02242355
– volume: 14
  start-page: 257
  issue: 2
  year: 1998
  ident: key2025101010341002323_20
  article-title: Fast Rectangular Matrix Multiplication and Applications
  publication-title: J. Complexity
  doi: 10.1006/jcom.1998.0476
– volume: 35
  year: 1990
  ident: key2025101010341002323_3
  publication-title: Algebraic Geometry for Scientists and Engineers
  doi: 10.1090/surv/035
– start-page: 341
  year: 2016
  ident: key2025101010341002323_27
  article-title: A Fast Algorithm for Computing the Truncated Resultant
  publication-title: Proceedings of the 41st international symposium on symbolic and algebraic computation, ISSAC 2016, Waterloo, Canada, July 20–22, 2016
  doi: 10.1145/2930889.2930931
– start-page: 296
  year: 2014
  ident: key2025101010341002323_26
  article-title: Powers of Tensors and Fast Matrix Multiplication
  publication-title: Proceedings of the 39th international symposium on symbolic and algebraic computation, ISSAC 2014, Kobe, Japan, July 23–25, 2014
  doi: 10.1145/2608628.2608664
– year: 1986
  ident: key2025101010341002323_6
  publication-title: Plane Algebraic Curves
  doi: 10.1007/978-3-0348-5097-1
– volume: 35
  start-page: 231
  issue: 1
  year: 1988
  ident: key2025101010341002323_21
  article-title: Greatest Common Divisors of Polynomials Given by Straight-line Programs
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/42267.45069
– volume: 204
  year: 1985
  ident: key2025101010341002323_13
  article-title: About a New Method for Computing in Algebraic Number Fields
  publication-title: EUROCAL 85. European Conference on Computer Algebra Linz, Austria, April 1–3 1985 Proceedings Vol. 2: Research Contributions
  doi: 10.1007/3-540-15984-3
– volume: 13
  year: 1950
  ident: key2025101010341002323_40
  publication-title: Algebraic Curves
– volume: 50
  start-page: 191
  issue: 4
  year: 2016
  ident: key2025101010341002323_14
  article-title: Death of Marc Rybowicz, Aged 52
  publication-title: ACM Commun. Comput. Algebra
  doi: 10.1145/3055282.3055300
– volume: 34
  start-page: 355
  issue: 5
  year: 2002
  ident: key2025101010341002323_12
  article-title: Linear differential operators for polynomial equations
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2002.0564
– volume: 74
  start-page: 190
  issue: 2
  year: 1989
  ident: key2025101010341002323_2
  article-title: Irreducibility criterion for germs of analytic functions of two complex variables
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(89)90009-1
– volume: 6
  year: 1951
  ident: key2025101010341002323_10
  publication-title: Introduction to the Theory of Algebraic Functions of One Variable
  doi: 10.1090/surv/006
– volume: 70
  start-page: 119
  issue: 2
  year: 1989
  ident: key2025101010341002323_16
  article-title: Rational Puiseux Expansions
  publication-title: Compos. Math.
– start-page: 13
  year: 2017
  ident: key2025101010341002323_1
  article-title: On the Extended Hensel Construction and Its Application to the Computation of Limit Points
  publication-title: Proceedings of the 42nd international symposium on symbolic and algebraic computation, ISSAC 2017, Kaiserslautern, Germany, July 25–28, 2017
  doi: 10.1145/3087604.3087658
– year: 1999
  ident: key2025101010341002323_29
  publication-title: Polígonos de Newton de orden superior y aplicaciones aritméticas
– start-page: 25
  year: 2007
  ident: key2025101010341002323_4
  article-title: Differential Equations for Algebraic Functions
  publication-title: ISSAC 2007. Proceedings of the 32nd international symposium on symbolic and algebraic computation (ISSAC 2007), Waterloo, ON, Canada, July 29–August 1, 2007
– volume: 55
  year: 2019
  ident: key2025101010341002323_24
  article-title: Accelerated tower arithmetic
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2019.03.002
– volume: 17
  start-page: 371
  issue: 5
  year: 1994
  ident: key2025101010341002323_37
  article-title: Fast Construction of Irreducible Polynomials over Finite Fields
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1994.1025
– year: 1994
  ident: key2025101010341002323_8
  publication-title: Polynomial and matrix computations. Fundamental algorithms. Vol. 1.
  doi: 10.1007/978-1-4612-0265-3
– volume: 47
  start-page: 32
  issue: 1
  year: 2012
  ident: key2025101010341002323_32
  article-title: Good reduction of Puiseux series and applications
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2011.08.008
– volume: 3
  year: 1986
  ident: key2025101010341002323_9
  publication-title: Local Fields
  doi: 10.1017/CBO9781139171885
– volume: 22
  start-page: 291
  issue: 2
  year: 1975
  ident: key2025101010341002323_28
  article-title: Multivariate Polynomial Factorization
  publication-title: J. ACM
  doi: 10.1145/321879.321890
– volume: 1973
  start-page: 285
  issue: 7-8
  year: 1974
  ident: key2025101010341002323_39
  article-title: Cycles évanescents, sections planes et conditions de Whitney
  publication-title: Singularités à Cargèse
– year: 1966
  ident: key2025101010341002323_17
  publication-title: Introduction to the Theory of Algebraic Numbers and Functions
– volume: 1
  start-page: 259
  issue: 3
  year: 1980
  ident: key2025101010341002323_5
  article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(80)90013-9
SSID ssj0002874042
Score 2.2110343
Snippet Let F ∈ [ X , Y ] be a polynomial of total degree D defined over a perfect field of characteristic zero or greater than D . Assuming F separable with respect...
Let $F ∈ K[X, Y ]$ be a polynomial of total degree D defined over a field K of characteristic zero or greater than D. Assuming F separable with respect to Y ,...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 1061
SubjectTerms Commutative Algebra
Computer Science
Mathematics
Symbolic Computation
Title Computing Puiseux series: a fast divide and conquer algorithm
URI https://inria.hal.science/hal-01578214
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2644-9463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002874042
  issn: 2644-9463
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2644-9463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002874042
  issn: 2644-9463
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLbY4ACHAQPEBgwLwSkKdI7TxNwqoOpEW1Vlk3aLHNtZI3Xp1LRTT_x23ovdJBU7jAOK5FSOlbp-X997fra_R8jHkIFN0DBNZTJQPpcp92MRGz9jCuwb5_I0q0hch9F4HF9eiolbiimrdAJRUcSbjbj5r6KGOhA2Hp39B3HXL4UK-AxChxLEDuW9BG_zNGAEYLLOS7PeePi1duub9DJZrrzqDJZxR9oKsAxLT86vFst8Nbtue6sVu7IpPTzJkHtDkER5ta6RMFkAQNaV8epppEtuVnnya5d72bIUtEMLrAkqXPSnnsbcR6uZXa9H7xntlOd7Z9NRb9poKXSofMGdljJ31Dk1y1tqEuehLZMLLgi7S52HcUUPK2fzz3YT7y5f9qD3K5l87yfDs_HP3aetTYaD3hDKmZz74PiAO3TKb4M98pBFocBMH6PfTUgOqf87Vbql-gfYbFTYjy-2Fzvuy95sG32vvJHzZ-TATSNoz4r_OXlgikPydJuigzqNfUiejGpa3vIFabBBHTaoxcZXKikig1pkUEAGdcigNTJekov-j_NvA9_lz_AVQwIO-KdlKdd4hUpHqhsEOpAKlLBhMox4mnVkxGU3TGNh4K6ZCVknY12jtdAmDV6R_WJRmNeERirraGRLNCrmOjIiliIMOFO4zp2x8Ih82g5Lohy5POY4mScwycThS2D4EhEdkfd1uxtLp_JXiw8wqvVDZD8HESZY1wjw-D6N3pDHCGobL3tL9lfLtXlHHqnbVV4uT6rgy0kFgD-LAHWh
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Puiseux+series%3A+a+fast+divide+and+conquer+algorithm&rft.jtitle=Annales+Henri+Lebesgue&rft.au=Poteaux%2C+Adrien&rft.au=Weimann%2C+Martin&rft.date=2021&rft.pub=UFR+de+Math%C3%A9matiques+-+IRMAR&rft.issn=2644-9463&rft.eissn=2644-9463&rft.volume=4&rft.spage=1061&rft.epage=1102&rft_id=info:doi/10.5802%2Fahl.97&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01578214v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-9463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-9463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-9463&client=summon