Continuous Estimation of Upper Limb Joint Angle Based on Stacked Denoising Autoencoder

In the human-robot interaction system of the rehabilitation robot for stroke rehabilitation, surface electromyography (sEMG) signal-based continuous joint angle estimation has essential significance and implementation value. However, the existing intra-subject mode is time-consuming and lacks genera...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 2402; číslo 1; s. 12043 - 12050
Hlavní autori: Wen, Liqun, Li, Donglin, Pei, Xinglong, Zhang, Yan, Wang, Jianhui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.12.2022
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the human-robot interaction system of the rehabilitation robot for stroke rehabilitation, surface electromyography (sEMG) signal-based continuous joint angle estimation has essential significance and implementation value. However, the existing intra-subject mode is time-consuming and lacks generality, while the adoption of the new inter-subject mode tests the model’s generalization ability; at the same time, the often-adopted multi-feature fusion strategy makes the feature dimensionality too high and increases the computational pressure of the system. In this regard, firstly, four time-domain features of multi-channel sEMG are extracted as the initial features; then, a stacked denoising autoencoder (SDAE) network is constructed to encode the initial set of sEMG features in low dimensions and extract more robust low-dimensional features; finally, an LSTM network is introduced as the regression network between sEMG features and joint angles. The results indicate that the feature extraction method proposed is superior to other methods and can be used for the control of the rehabilitation robot with a stable and accurate continuous joint angle estimation during motion.
AbstractList In the human-robot interaction system of the rehabilitation robot for stroke rehabilitation, surface electromyography (sEMG) signal-based continuous joint angle estimation has essential significance and implementation value. However, the existing intra-subject mode is time-consuming and lacks generality, while the adoption of the new inter-subject mode tests the model’s generalization ability; at the same time, the often-adopted multi-feature fusion strategy makes the feature dimensionality too high and increases the computational pressure of the system. In this regard, firstly, four time-domain features of multi-channel sEMG are extracted as the initial features; then, a stacked denoising autoencoder (SDAE) network is constructed to encode the initial set of sEMG features in low dimensions and extract more robust low-dimensional features; finally, an LSTM network is introduced as the regression network between sEMG features and joint angles. The results indicate that the feature extraction method proposed is superior to other methods and can be used for the control of the rehabilitation robot with a stable and accurate continuous joint angle estimation during motion.
Author Li, Donglin
Zhang, Yan
Wang, Jianhui
Pei, Xinglong
Wen, Liqun
Author_xml – sequence: 1
  givenname: Liqun
  surname: Wen
  fullname: Wen, Liqun
  organization: College of Information Science and Engineering, Northeastern University , China
– sequence: 2
  givenname: Donglin
  surname: Li
  fullname: Li, Donglin
  organization: College of Information Science and Engineering, Northeastern University , China
– sequence: 3
  givenname: Xinglong
  surname: Pei
  fullname: Pei, Xinglong
  organization: College of Information Science and Engineering, Northeastern University , China
– sequence: 4
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: School of Electronic Information Engineering, Ningxia Institute of Science and Technology , China
– sequence: 5
  givenname: Jianhui
  surname: Wang
  fullname: Wang, Jianhui
  organization: College of Information Science and Engineering, Northeastern University , China
BookMark eNqFkF1LwzAUhoNMcJv-BgPeCbP5aptezjo_xkBhztvQpsnI3JLatBf-e1MqE0Hw3JwDed9z8j4TMLLOKgAuMbrBiPMIp4zMkjhLIsIQiXCEMEGMnoDx8WV0nDk_AxPvdwjRUOkYvOXOtsZ2rvNw4VtzKFrjLHQabupaNXBlDiVcOmNbOLfbvYK3hVcVDJJ1W8j3MN4p64w3dgvnXeuUla5SzTk41cXeq4vvPgWb-8Vr_jhbPT885fPVTPZ_nJVSZpyXSmeElVTGJJMsTjTCqMKFkmmpqoRTIqXSCaMliTXWrAwxqKYJK1M6BVfD3rpxH53yrdi5rrHhpCBpzFDCecg5Bemgko3zvlFa1E1I2nwKjEQPUfR4RI9K9BAFFgPE4KSD07j6Z_X_rus_XMuXfP1bKOpK0y_kSYLC
Cites_doi 10.1109/LRA.2021.3097272
10.1016/j.bspc.2020.102024
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2402/1/012043
DatabaseName Institute of Physics Journals Open Access
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: IOP_英国物理学会OA刊
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2402_1_012043
JPCS_2402_1_012043
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2043-bcc988bef924b3c529c456f010d1aec7bed6832ccef643b25f1f4b6583f364b73
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Sun Nov 09 08:24:21 EST 2025
Sat Nov 29 02:51:22 EST 2025
Wed Aug 21 03:32:22 EDT 2024
Wed Dec 21 00:39:29 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2043-bcc988bef924b3c529c456f010d1aec7bed6832ccef643b25f1f4b6583f364b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2754068833?pq-origsite=%requestingapplication%
PQID 2754068833
PQPubID 4998668
PageCount 8
ParticipantIDs iop_journals_10_1088_1742_6596_2402_1_012043
proquest_journals_2754068833
crossref_primary_10_1088_1742_6596_2402_1_012043
PublicationCentury 2000
PublicationDate 20221201
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Wang (JPCS_2402_1_012043bib2) 2020; 2020
Ma (JPCS_2402_1_012043bib1) 2020; 61
Ma (JPCS_2402_1_012043bib3) 2021; 6
Deng (JPCS_2402_1_012043bib5) 2020; 12
Chen (JPCS_2402_1_012043bib4) 2019; 7
References_xml – volume: 2020
  year: 2020
  ident: JPCS_2402_1_012043bib2
  article-title: Estimation of continuous joint angles of upper limb based on sEMG by using GA-Elman neural network
  publication-title: Math. Probl. Eng.
– volume: 12
  year: 2020
  ident: JPCS_2402_1_012043bib5
  article-title: Angle estimation for knee joint movement based on PCA-RELM algorithm
  publication-title: Symmetry-Basel
– volume: 6
  start-page: 7217
  year: 2021
  ident: JPCS_2402_1_012043bib3
  article-title: A bi-directional LSTM network for estimating continuous upper limb movement from surface electromyography
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3097272
– volume: 61
  year: 2020
  ident: JPCS_2402_1_012043bib1
  article-title: Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102024
– volume: 7
  year: 2019
  ident: JPCS_2402_1_012043bib4
  article-title: A continuous estimation model of upper limb joint angles by using surface electromyography and deep learning method
  publication-title: IEEE Access
SSID ssj0033337
Score 2.314605
Snippet In the human-robot interaction system of the rehabilitation robot for stroke rehabilitation, surface electromyography (sEMG) signal-based continuous joint...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12043
SubjectTerms Electromyography
Feature extraction
Human engineering
Noise reduction
Physics
Rehabilitation
Rehabilitation robots
Robot control
Robots
Robustness (mathematics)
SummonAdditionalLinks – databaseName: Institute of Physics Journals Open Access
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60KnjxLVarLOjR2Cabx-ZYa4uUUgVt7W3JviSgSWgTf7-zSYoUERHMKYfZZPiyO_NNdmYWoSvVIUILTSwV2tpyQ6osqnlkuZ6ZARBCy7ID33QUjMd0NgtXamHSrDb9N3BbNQquIKwT4mgbOLRj-V7ot83OQNtum_pPl6yjDUI938z1B_KytMYErqAqijSDKF3meP38oBUPtQ5afDPTpe8Z7P6H1ntop2aeuFuN2EdrKjlAW2UGqFgcoqnpUxUnRVoscB_WfVXSiFONJ1mm5ngUv3M8TOMkx93k9U3hW_B_EoMI8FUwBRLfqSSNza8H3C3y1DTIlGp-hCaD_nPv3qoPXbCE0cfiQoSUcqUhMONEeE4ogGNpCNukHSkRcCV9sAJCKA1khjuetrXLAVmiie_ygByjRpIm6gRhMKNuwKMgokC6IiohtPI8HXaEkEHH5rSJOkugWVb11mDlnjilzMDFDFzMwMVsVsHVRNcAMKvX2eJ38csV8eFj72lVgmVSN1Fr-X2_RJ0AuKxvjmI-_ds7z9C2Y0okypSXFmrk80Kdo03xkceL-UU5OT8B1K3bZw
  priority: 102
  providerName: IOP Publishing
Title Continuous Estimation of Upper Limb Joint Angle Based on Stacked Denoising Autoencoder
URI https://iopscience.iop.org/article/10.1088/1742-6596/2402/1/012043
https://www.proquest.com/docview/2754068833
Volume 2402
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP_英国物理学会OA刊
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RFiQuvCsCJVoJjqwSe-14fUJpSQVVCRbQUrisvC9kidpunPD7mfFDVYQEB3xcz8Heb-e18wJ45WbCeOMFd2ngeZRKx6XXOY9iOgHoQtu2A9_FWbJaycvLNOsv3Jo-rXKQia2gtpWhO_JpmKBtMafRuG_qa05Toyi62o_QGME-dUkgxszi74MkFvgkXUFkyFHTyiG_C52-fi2dTym8MA2mVEQaiR3tNCqq-g8R3eqdk_v_-8UP4F5vcbJFd0Qewi1XPoI7beanaR7DBfWnKspttW3YEvm9K2VklWfnde3W7Ky40uy0KsoNW5Q_fjp2hHrPMiRBOxVFgGVvXVkVdOXAFttNRY0xrVs_gfOT5Zfjd7wftsAN_TjXxqRSaufRIdPCxGFq0Lby6K7ZIHcm0c7OkfuNcR6NGB3GPvCRxl0VXswjnYgD2Cur0j0FhuIzSnSe5BKNrVxadKni2KczY2wyC7Qcw2zYZFV3PTVUGwuXUhEuinBRhIsKVIfLGF4jGKrnr-bf5C93yE-z48-7FKq2fgyHA3A3pDeoPfv76-dwN6RSiDa15RD2NuutewG3za9N0awnsH-0XGWfJjD6KL5O2mOJa9n7D9m338S84ro
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BSgUXWtoiArRdCbh1lfgVrw8IpTzEI0SReAhx2XpfyBLYJk6o-qf4jczasVCEVE4c8NEeW_Lut_PN7M4DYFO3PWmk8aiOHEP9iGnKjIipH1gEoAutygp8l72w32dXV9FgBh7rXBgbVlnrxFJRq0zaPfKWG6Jt0bGtcXfye2q7RtnT1bqFRgWLE_3vL7psxfbRHs7vluse7J_vHtJJVwEqbR4oFVJGjAlt0PMQngzcSKIRYdAvUU6sZSi06iDMpdQG2Vq4gXGML5CoPeN1fBF6-N1Z-OD76Czh-hkE17Xm9_AKqwRMl-ILrI4nQydzci_qtOxxRstp2aRV35tiw9kky19QQslzB5_e2wh9hsWJRU261RJYghmdfoGPZWSrLL7Cpa2_laTjbFyQfdRnVaomyQy5yHM9JL3kTpDjLElHpJve3GryG3ldERRBOxxVnCJ7Os0Su6VCuuNRZgt_Kj38Bhdv8lPL0EizVK8AQXrwQxGHMUNjMmYKXcYgMFFbShW2HcGa0K4nledVzRBenvUzxi0OuMUBtzjgDq9w0IRfOPl8oj-K18U3psSPB7tn0xI8V6YJ6zVQnkWfUbL6_8c_Yf7w_LTHe0f9kzVYcG3aRxnGsw6N0XCsv8OcfBglxfBHuQgI_HlrTD0BagU8EA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB61XUBcWB672kIXLMGRkIfzcI6l22opVakELb1Z8WsViU2iPvj9jJMUVCGEVtqcchgn1md75ht7ZgzwTntUGmmoo1PfOGHKtMOMyJwwsjMAXWhVV-BbzZL5nK3X6aIDk9-5MGXVqv4P-NoUCm4gbAPimIscOnDiKI1dezLg-q7N_wypWynThZOIRtRe4fCFfj9oZIpP0iRG2oaMHeK8_v2xIyvVxZ78papr-zM5va-eP4UnLQMlw6bVM-jo4jk8rCNB5fYFrGy9qrzYl_stGeP6b1IbSWnIsqr0hszyW0GmZV7syLC4-aHJR7SDiqAI8lZUCYpc6aLM7RYEGe53pS2UqfTmDJaT8bfRtdNevuBI2ydHSJkyJrRBB01QGQWpRK5l0H1TfqZlIrSKURtIqQ2SGhFExjehQHSpoXEoEnoOvaIs9AUQVKdhIrIkY0i-MqbQxYoik3pSqsTzBeuDdwCbV02NDV6fjTPGLWTcQsYtZNznDWR9eI8g83a9bf8v_vZIfLoYfT2W4DgGfRgcxviPaJAgp43tlcwv7_bPN_BocTXhs0_zz6_gcWCzJuoomAH0dpu9voQH8ucu325e13P1F6je4MY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Estimation+of+Upper+Limb+Joint+Angle+Based+on+Stacked+Denoising+Autoencoder&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wen%2C+Liqun&rft.au=Li%2C+Donglin&rft.au=Pei%2C+Xinglong&rft.au=Zhang%2C+Yan&rft.date=2022-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2402&rft.issue=1&rft.spage=012043&rft_id=info:doi/10.1088%2F1742-6596%2F2402%2F1%2F012043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon