A Comparative Study of Generative Adversarial Networks in Medical Image Processing

The rapid development of Generative Adversarial Networks (GANs) has transformed medical image processing, enabling realistic image synthesis, augmentation, and restoration. This study presents a comparative evaluation of three representative GAN architectures, Pix2Pix, SPADE GAN, and Wasserstein GAN...

Full description

Saved in:
Bibliographic Details
Published in:Eng (Basel, Switzerland) Vol. 6; no. 11; p. 291
Main Authors: Abdulqader, Marwa Mahfodh, Abdulazeez, Adnan Mohsin
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2025
Subjects:
ISSN:2673-4117, 2673-4117
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid development of Generative Adversarial Networks (GANs) has transformed medical image processing, enabling realistic image synthesis, augmentation, and restoration. This study presents a comparative evaluation of three representative GAN architectures, Pix2Pix, SPADE GAN, and Wasserstein GAN (WGAN), across multiple medical imaging tasks, including segmentation, image synthesis, and enhancement. Experiments were conducted on three benchmark datasets: ACDC (cardiac MRI), Brain Tumor MRI, and CHAOS (abdominal MRI). Model performance was assessed using Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Dice coefficient, and segmentation accuracy. Results show that SPADE-inpainting achieved the best image fidelity (PSNR ≈ 36 dB, SSIM > 0.97, Dice ≈ 0.94, FID < 0.01), while Pix2Pix delivered the highest segmentation accuracy (Dice ≈ 0.90 on ACDC). WGAN provided stable enhancement and strong visual sharpness on smaller datasets such as Brain Tumor MRI. The findings confirm that no single GAN architecture universally excels across all tasks; performance depends on data complexity and task objectives. Overall, GANs demonstrate strong potential for medical image augmentation and synthesis, though their clinical utility remains dependent on anatomical fidelity and dataset diversity.
AbstractList The rapid development of Generative Adversarial Networks (GANs) has transformed medical image processing, enabling realistic image synthesis, augmentation, and restoration. This study presents a comparative evaluation of three representative GAN architectures, Pix2Pix, SPADE GAN, and Wasserstein GAN (WGAN), across multiple medical imaging tasks, including segmentation, image synthesis, and enhancement. Experiments were conducted on three benchmark datasets: ACDC (cardiac MRI), Brain Tumor MRI, and CHAOS (abdominal MRI). Model performance was assessed using Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Dice coefficient, and segmentation accuracy. Results show that SPADE-inpainting achieved the best image fidelity (PSNR ≈ 36 dB, SSIM > 0.97, Dice ≈ 0.94, FID < 0.01), while Pix2Pix delivered the highest segmentation accuracy (Dice ≈ 0.90 on ACDC). WGAN provided stable enhancement and strong visual sharpness on smaller datasets such as Brain Tumor MRI. The findings confirm that no single GAN architecture universally excels across all tasks; performance depends on data complexity and task objectives. Overall, GANs demonstrate strong potential for medical image augmentation and synthesis, though their clinical utility remains dependent on anatomical fidelity and dataset diversity.
Author Abdulazeez, Adnan Mohsin
Abdulqader, Marwa Mahfodh
Author_xml – sequence: 1
  givenname: Marwa Mahfodh
  surname: Abdulqader
  fullname: Abdulqader, Marwa Mahfodh
– sequence: 2
  givenname: Adnan Mohsin
  orcidid: 0000-0002-4357-7331
  surname: Abdulazeez
  fullname: Abdulazeez, Adnan Mohsin
BookMark eNpNkUtLAzEUhYMoWGs3_oKAO6Ga90yWpWgt1Ac-1iGT3BmmtpOaTCv9905tUVf3cDic78I5Q8dNaAChC0quOdfkBppKUUqYpkeox1TGh4LS7PifPkWDlOaEEJZpIZXsoZcRHoflykbb1hvAr-3ab3Eo8QQaOHgjv4GYbKztAj9C-xXiR8J1gx_A167zpktbAX6OwUFKdVOdo5PSLhIMDreP3u9u38b3w9nTZDoezYaOEUGHlPss97SgqhOWiYwr78CCdoJL55zkhSPcUQ2KkMIxpYqy5ECU96CVFbyPpvteH-zcrGK9tHFrgq3NjxFiZWxsa7cAIxjLcu2FtzkTQtPccVVSRfJcQgfNuq7Lfdcqhs81pNbMwzo23fuGs0xKSrXcEa_2KRdDShHKXyolZjeB-ZuAfwPlkXl3
Cites_doi 10.1007/s44196-025-00920-6
10.1007/s10462-023-10624-y
10.1117/1.JMI.12.S2.S22014
10.1109/ISSC61953.2024.10603268
10.3390/jcm13123556
10.1016/j.imu.2021.100779
10.1109/ACCESS.2024.3370848
10.1109/ACCESS.2025.3555638
10.59247/csol.v3i1.170
10.33899/edusj.2024.148937.1448
10.1016/j.media.2020.101950
10.3390/fi13010008
10.1016/0021-9991(88)90002-2
10.3390/jimaging9030069
10.1016/j.compbiomed.2025.110094
10.1016/j.modpat.2023.100369
10.3390/app15105655
10.3390/brainsci14060559
10.1007/s00530-024-01349-1
10.1007/s43926-025-00130-8
10.1038/s41598-024-84786-2
10.1080/21681163.2025.2476702
10.1038/s41598-025-91416-y
10.1109/ISBI.2018.8363576
10.3390/jimaging11010019
10.1016/j.compbiomed.2024.109248
10.53388/MDM202508014
10.3389/fradi.2023.1336902
10.1016/j.procs.2024.12.037
10.3390/app14156831
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/eng6110291
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-4117
ExternalDocumentID oai_doaj_org_article_422789d4da8244918c36f160885edce7
10_3390_eng6110291
GroupedDBID AADQD
AAYXX
ABDBF
ABJCF
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
MODMG
M~E
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2041-13d78d1b163d7a24736dceae9c435ccc53bc03c19e600bc266bff3e06dde96a43
IEDL.DBID DOA
ISSN 2673-4117
IngestDate Mon Dec 01 19:30:35 EST 2025
Wed Nov 26 14:54:11 EST 2025
Wed Nov 05 20:52:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2041-13d78d1b163d7a24736dceae9c435ccc53bc03c19e600bc266bff3e06dde96a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4357-7331
OpenAccessLink https://doaj.org/article/422789d4da8244918c36f160885edce7
PQID 3275511954
PQPubID 5046902
ParticipantIDs doaj_primary_oai_doaj_org_article_422789d4da8244918c36f160885edce7
proquest_journals_3275511954
crossref_primary_10_3390_eng6110291
PublicationCentury 2000
PublicationDate 20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Eng (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kavur (ref_38) 2021; 69
ref_14
ref_36
ref_13
ref_35
Nandal (ref_1) 2025; 18
ref_11
ref_10
ref_32
Sindhura (ref_31) 2024; 30
Alajaji (ref_15) 2024; 37
ref_19
ref_18
Chen (ref_2) 2025; 17
ref_16
ref_37
Selvam (ref_20) 2025; 5
Motamed (ref_33) 2021; 27
Islam (ref_9) 2024; 12
Saad (ref_7) 2024; 57
Tariq (ref_21) 2025; 13
Osuala (ref_12) 2025; 12
ref_22
Balasubramaniam (ref_25) 2025; 8
Eker (ref_17) 2024; 58
Ahmed (ref_34) 2013; 4
Osher (ref_24) 1988; 79
ref_3
ref_29
Purwono (ref_26) 2025; 3
ref_28
Kuraning (ref_23) 2025; 252
ref_27
Hussien (ref_30) 2024; 33
ref_8
ref_5
ref_4
ref_6
References_xml – volume: 18
  start-page: 190
  year: 2025
  ident: ref_1
  article-title: Image Denoising Using Quantum Deep Convolutional Generative Adversarial Network for Medical Images
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-025-00920-6
– volume: 57
  start-page: 19
  year: 2024
  ident: ref_7
  article-title: A survey on training challenges in generative adversarial networks for biomedical image analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10624-y
– volume: 12
  start-page: S22014
  year: 2025
  ident: ref_12
  article-title: Simulating dynamic tumor contrast enhancement in breast MRI using conditional generative adversarial networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.12.S2.S22014
– ident: ref_5
  doi: 10.1109/ISSC61953.2024.10603268
– ident: ref_32
  doi: 10.3390/jcm13123556
– volume: 27
  start-page: 100779
  year: 2021
  ident: ref_33
  article-title: Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2021.100779
– ident: ref_3
– volume: 12
  start-page: 35728
  year: 2024
  ident: ref_9
  article-title: Generative Adversarial Networks (GANs) in Medical Imaging: Advancements, Applications, and Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3370848
– volume: 13
  start-page: 63857
  year: 2025
  ident: ref_21
  article-title: Transforming Brain Tumor Detection Empowering Multi-Class Classification with Vision Transformers and EfficientNetV2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3555638
– volume: 3
  start-page: 36
  year: 2025
  ident: ref_26
  article-title: Understanding Generative Adversarial Networks (GANs): A Review
  publication-title: Control Syst. Optim. Lett.
  doi: 10.59247/csol.v3i1.170
– volume: 33
  start-page: 24
  year: 2024
  ident: ref_30
  article-title: Deep Generative Adversarial Networks for Noise Reduction in Medical Images: A Review
  publication-title: J. Educ. Sci.
  doi: 10.33899/edusj.2024.148937.1448
– volume: 69
  start-page: 101950
  year: 2021
  ident: ref_38
  article-title: CHAOS Challenge—Combined (CT-MR) Healthy Abdominal Organ Segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101950
– ident: ref_37
– ident: ref_35
  doi: 10.3390/fi13010008
– volume: 79
  start-page: 12
  year: 1988
  ident: ref_24
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– ident: ref_14
  doi: 10.3390/jimaging9030069
– volume: 17
  start-page: e77391
  year: 2025
  ident: ref_2
  article-title: Using the Regression Slope of Training Loss to Optimize Chest X-ray Generation in Deep Convolutional Generative Adversarial Networks
  publication-title: Cureus
– ident: ref_11
  doi: 10.1016/j.compbiomed.2025.110094
– volume: 37
  start-page: 100369
  year: 2024
  ident: ref_15
  article-title: Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions
  publication-title: Mod. Pathol.
  doi: 10.1016/j.modpat.2023.100369
– ident: ref_28
  doi: 10.3390/app15105655
– ident: ref_8
  doi: 10.3390/brainsci14060559
– volume: 30
  start-page: 161
  year: 2024
  ident: ref_31
  article-title: A review of deep learning and Generative Adversarial Networks applications in medical image analysis
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-024-01349-1
– volume: 5
  start-page: 39
  year: 2025
  ident: ref_20
  article-title: Federated learning-based hybrid convolutional recurrent neural network for multi-class intrusion detection in IoT networks
  publication-title: Discov. Internet Things
  doi: 10.1007/s43926-025-00130-8
– ident: ref_22
  doi: 10.1038/s41598-024-84786-2
– ident: ref_19
  doi: 10.1080/21681163.2025.2476702
– ident: ref_29
  doi: 10.1038/s41598-025-91416-y
– ident: ref_13
  doi: 10.1109/ISBI.2018.8363576
– ident: ref_18
  doi: 10.3390/jimaging11010019
– ident: ref_27
– ident: ref_6
  doi: 10.1016/j.compbiomed.2024.109248
– ident: ref_10
– volume: 58
  start-page: 101827
  year: 2024
  ident: ref_17
  article-title: BrainPixGAN: Generating intraoperative MRI images with mask-based generative networks
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 8
  start-page: 14
  year: 2025
  ident: ref_25
  article-title: Medical Image Enhancement for Improved Diagnostic Accuracy Using Generative Adversarial Network
  publication-title: Med. Data Min.
  doi: 10.53388/MDM202508014
– ident: ref_16
  doi: 10.3389/fradi.2023.1336902
– volume: 252
  start-page: 355
  year: 2025
  ident: ref_23
  article-title: Cycle-Consistent Generative Adversarial Network Based Approach for Denoising CT Scan Images
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.12.037
– ident: ref_36
– ident: ref_4
  doi: 10.3390/app14156831
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_34
  article-title: A New Modified Embedded Zerotree Wavelet Approach for Image Coding (NMEZW)
  publication-title: Int. J. Sci. Eng. Res.
SSID ssj0002794565
Score 2.3080113
Snippet The rapid development of Generative Adversarial Networks (GANs) has transformed medical image processing, enabling realistic image synthesis, augmentation, and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 291
SubjectTerms Accuracy
Brain
Brain cancer
Comparative studies
Computer vision
Datasets
deep learning
Generative adversarial networks
Image processing
Image segmentation
Magnetic resonance imaging
medical image
Medical imaging
MRI
Realism
segmentation
Signal to noise ratio
Synthesis
Task complexity
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IqDX4qZJm-Yku6IoyCKi4q2keYgHu7pVwX_vJM26iuDFa1pKyby-TGa-ATgsXOaUMCzpSVslXOcuUbyiSUGpcxValw10TXeXYjgs7u_lVUy4NbGscuITg6M2I-1z5EcsFVkW-MmOn18SPzXK367GERqzMOeZyngH5ganw6vrryxLiuqGkKXlJWV4vj-y9UOOIS-V9EckCoT9v_xxCDJny__9vRVYivCS9Ft9WIUZW6_B4jfSwXW47pOTKeU38YWEH2TkSEtAHdbClOZGed0kw7ZOvCGPNYm3OuTiCb0QiT0G-NENuD07vTk5T-JkhUSnPU4TyowoDK0QjBmhUi5YbrRVVmpET1rrjFW6xzSVFvFQpTGIV84x28vRGcpccbYJnXpU2y0g3PJKGSoLqhgXXEncdKVFphmuI1brwsFkl8vnlkCjxIOHl0U5lUUXBl4AX2940uuwMBo_lNGGSh7adg03qkBQImmhWe5ojn4y87Wsogu7E9mU0RKbciqY7b8f78BC6mf7hj7DXei8jt_sHszr99fHZrwfFesTf5HYmg
  priority: 102
  providerName: ProQuest
Title A Comparative Study of Generative Adversarial Networks in Medical Image Processing
URI https://www.proquest.com/docview/3275511954
https://doaj.org/article/422789d4da8244918c36f160885edce7
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794565
  issn: 2673-4117
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794565
  issn: 2673-4117
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2673-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794565
  issn: 2673-4117
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2673-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794565
  issn: 2673-4117
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2673-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794565
  issn: 2673-4117
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPehB_InTOQJ6LVuatGmO29hQ0FLmD-appGkiE-xknYL_vS9p5yYevHh9lLZ8L8n7HnnvewhdRiYwkufU6wqdeUyFxpMsI15EiDEZ7C7t5Joeb3gcR5OJSNZGfdmasEoeuAKuw1yvZs5yGUEkEiRSNDQkhM0R2AJG10cOrGctmXpx12nCUpVKj5RCXt_RxXMIoc4X5EcEckL9v85hF1xGe2i3ZoW4V_3NPtrQxQHaWdMKPETjHh6slLqxrf_7xDODK91oZ3PDlUtplxSOq_LuEk8LXF_G4OtXODxw3RoALz1CD6Ph_eDKqwcieMrvMuIRmvMoJxlwqJxLn3EaAgRSCwWkRykV0Ex1qSJCA43JFMTezBiquyGcYSKUjB6jRjEr9AnCTLNM5kRERFLGmRSAmVQ8UBTsQLGa6GIJUvpW6V6kkC9YKNMVlE3Ut_h9P2G1qp0BPJjWHkz_8mATtZbop_UGKlPq8yBwcnSn__GNM7Tt28G9romwhRqL-bs-R1vqYzEt52202R_Gybjt1lDbln_egS25vk2evgBuQsyY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwKFCKurQFS9Bj1Dh24viAUGmpuup2tUKlKqfU8ceqh2bLZgHtn-I3MnaSLqgStx64OpGlZJ5nnu2ZNwDvcpc6JQyLYmnLiOvMRYqXNMopda7E1WWDXNP5UIxG-cWFHK_Ar64WxqdVdj4xOGoz1f6MfI8lIk2DPtmHm2-R7xrlb1e7FhoNLE7s4idu2er3g0O0726SHH06OziO2q4CkU5iTiPKjMgNLZGIGKESLlhmtFVWamQOWuuUlTpmmkqLXKDUGMBK55iNM3QEMlOc4bwPYJUj2PMerI4Hp-Ovt6c6CcIbKVKjg8qYjPdsNckwxCaS_hX5QoOAO_4_BLWjp__b73gGay19JvsN3p_Diq3W4ckfooov4PM-OVhKmhOfKLkgU0cage0wFrpQ18qvPTJq8uBrclWR9taKDK7Ry5K2hgIn3YAv9_JRL6FXTSu7CYRbXipDZU4V44IriUZWWqSa4Thy0T687axa3DQCIQVurLzti6Xt-_DRG_z2DS_qHQams0nR-oiCh7Jkw43KkXRJmmuWOZphHEh9rq7ow3aHhaL1NHWxBMKrfz9-A4-Oz06HxXAwOtmCx4nvYxxqKrehN599tzvwUP-YX9Wz1y2oCVzeN3B-A6F0Nq0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqKpyKLS06hZoLQHHaOPYieNDhSiw6gq0QnyJW3D8seLQLN1AK_5af13HTsKCKnHj0KsTWUrmeebZnnkDsJm71ClhWBRLW0ZcZy5SvKRRTqlzJa4uG-Sazg_FaJRfXMijOfjT1cL4tMrOJwZHbSban5H3WSLSNOiT9V2bFnG0N9i-_hn5DlL-prVrp9FA5MDe_cbtW_11uIe23kqSwf7p7veo7TAQ6STmNKLMiNzQEkmJESrhgmVGW2WlRhahtU5ZqWOmqbTIC0qNwax0jtk4Q6cgM8UZzvsCFgRHnhDSBk_uz3cSBDqSpUYRlTEZ9201zjDYJpI-ioGhVcA_kSCEt8HS__xjluFNS6rJTrMK3sKcrd7B4gOpxRU43iG7M6Fz4tMn78jEkUZ2O4yF3tS18iuSjJrs-JpcVaS9yyLDH-h7SVtZgZO-h7Nn-agPMF9NKvsRCLe8VIbKnCrGBVcSDa60SDXDcWSoPdjoLFxcN7IhBW63PA6KGQ568M0b__4NL_UdBibTcdF6joKHYmXDjcqRikmaa5Y5mmF0SH0Gr-jBWoeLovU_dTEDxaenH3-BV4iW4nA4OliF14lvbhwKLddg_mZ6a9fhpf51c1VPPwd0E7h8btT8BRi-PfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Generative+Adversarial+Networks+in+Medical+Image+Processing&rft.jtitle=Eng+%28Basel%2C+Switzerland%29&rft.au=Abdulqader%2C+Marwa+Mahfodh&rft.au=Abdulazeez%2C+Adnan+Mohsin&rft.date=2025-11-01&rft.issn=2673-4117&rft.eissn=2673-4117&rft.volume=6&rft.issue=11&rft.spage=291&rft_id=info:doi/10.3390%2Feng6110291&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_eng6110291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-4117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-4117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-4117&client=summon