Improving the Initial Centroids of k-means Clustering Algorithm to Generalize its Applicability

k-means is one of the most widely used partition based clustering algorithm. But the initial centroids generated randomly by the k-means algorithm cause the algorithm to converge at the local optimum. So to make k-means algorithm globally optimum, the initial centroids must be selected carefully rat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Institution of Engineers (India). Series B, Electrical Engineering, Electronics and telecommunication engineering, Computer engineering Ročník 95; číslo 4; s. 345 - 350
Hlavní autoři: Goyal, M., Kumar, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: India Springer India 01.12.2014
Témata:
ISSN:2250-2106, 2250-2114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:k-means is one of the most widely used partition based clustering algorithm. But the initial centroids generated randomly by the k-means algorithm cause the algorithm to converge at the local optimum. So to make k-means algorithm globally optimum, the initial centroids must be selected carefully rather than randomly. Though many researchers have already been carried out for the enhancement of k-means algorithm, they have their own limitations. In this paper a new method to formulate the initial centroids is proposed which results in better clusters equally for uniform and non-uniform data sets.
ISSN:2250-2106
2250-2114
DOI:10.1007/s40031-014-0106-z