Image-Free Target Classification With Semiactive Laser Detection System

Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 22; číslo 23; s. 23088 - 23094
Hlavní autoři: Wang, Siyuan, Li, Lijing, Yu, Zijian, Sun, Mingjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.12.2022
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolutional neural network (CNN) architecture. The convolutional layer is implemented optically by illuminating the target with training-obtained modulated patterns, and the detected intensity signals are regarded as compressed target features. The convolutional layers and classification net are trained together on an electronic platform. Layer normalization (LN) is adopted to improve network generalization ability and accelerate the training process. Network hyperparameters such as the channel numbers and kernel sizes of convolutional layers are analyzed and selected. The feasibility and robustness of the network are verified by both numerical simulation and experiments, whose classification accuracies are 88% and 66%, respectively. The proposed SAL detection and classification system is calculation-efficient and convenient to be adopted in existing guidance platforms or other real-time applications with limited computing resources.
AbstractList Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolutional neural network (CNN) architecture. The convolutional layer is implemented optically by illuminating the target with training-obtained modulated patterns, and the detected intensity signals are regarded as compressed target features. The convolutional layers and classification net are trained together on an electronic platform. Layer normalization (LN) is adopted to improve network generalization ability and accelerate the training process. Network hyperparameters such as the channel numbers and kernel sizes of convolutional layers are analyzed and selected. The feasibility and robustness of the network are verified by both numerical simulation and experiments, whose classification accuracies are 88% and 66%, respectively. The proposed SAL detection and classification system is calculation-efficient and convenient to be adopted in existing guidance platforms or other real-time applications with limited computing resources.
Author Sun, Mingjie
Yu, Zijian
Li, Lijing
Wang, Siyuan
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Lijing
  orcidid: 0000-0002-2676-4848
  surname: Li
  fullname: Li, Lijing
  organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Zijian
  surname: Yu
  fullname: Yu, Zijian
  organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Mingjie
  orcidid: 0000-0003-0649-522X
  surname: Sun
  fullname: Sun, Mingjie
  organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
BookMark eNp9kE9PAjEQxRuDiYB-AG-beF7sX9o9GgTEED2A0VvTLbNYwu5iW0j49u4CJw-eZpJ5b-bNr4c6VV0BQvcEDwjB2ePrYvw2oJjSAaNEUkWuUJcIoVIiueq0PcMpZ_LrBvVC2GBMMilkF01npVlDOvEAydL4NcRktDUhuMJZE11dJZ8uficLKJ2x0R0gmZsAPnmGCPY0XxxDhPIWXRdmG-DuUvvoYzJejl7S-ft0Nnqap5ZiFtMcD3NWUJ5bORRKrJRUQIgkQFcGMBPS8qyJxpThhRV2pYwkuckA40LkObWsjx7Oe3e-_tlDiHpT733VnNRUciox50PVqORZZX0dgodCWxdP70Rv3FYTrFtquqWmW2r6Qq1xkj_OnXel8cd_PL9P6nC-
CitedBy_id crossref_primary_10_23919_JSEE_2024_000104
crossref_primary_10_1016_j_physleta_2024_129550
crossref_primary_10_1016_j_optlaseng_2024_108629
crossref_primary_10_1109_JSEN_2024_3394171
crossref_primary_10_3788_COL202523_091101
crossref_primary_10_1016_j_ast_2025_110263
crossref_primary_10_1016_j_heliyon_2024_e35806
crossref_primary_10_1364_AO_537914
crossref_primary_10_1109_TIM_2025_3574902
Cites_doi 10.1088/1361-6439/abf333
10.1038/s41598-017-03725-6
10.1364/OE.412597
10.1145/3065386
10.1364/OL.44.005186
10.1109/JPHOT.2017.2741966
10.1364/AO.58.007741
10.1109/JSEN.2019.2963050
10.1103/PhysRevA.78.061802
10.1126/science.aat8084
10.1063/1.3238296
10.1364/AO.57.006898
10.1002/j.1538-7305.1969.tb01187.x
10.1016/j.ijleo.2019.05.017
10.1364/AO.381626
10.1364/OE.392370
10.1364/OE.26.010048
10.1038/s41586-020-2973-6
10.1016/j.cja.2020.11.020
10.1364/OE.416481
10.1109/LED.2021.3059781
10.1364/OE.403195
10.1109/TIM.2021.3079563
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3217281
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 23094
ExternalDocumentID 10_1109_JSEN_2022_3217281
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c203t-b06b3f24bc76585d878e1171e2dae0357c4901938a4fc5cd8a71ba9e00f5bb2c3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893571900081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:15:01 EDT 2025
Sat Nov 29 06:39:23 EST 2025
Tue Nov 18 21:47:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c203t-b06b3f24bc76585d878e1171e2dae0357c4901938a4fc5cd8a71ba9e00f5bb2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0649-522X
0000-0002-2676-4848
PQID 2742704468
PQPubID 75733
PageCount 7
ParticipantIDs proquest_journals_2742704468
crossref_citationtrail_10_1109_JSEN_2022_3217281
crossref_primary_10_1109_JSEN_2022_3217281
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationYear 2022
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref14) 2017; 7
(ref15) 2018; 8
ref24
ref23
ref20
ref21
(ref22) 2022; 71
ref28
ref29
(ref27) 2015
ref8
ioffe (ref25) 2016; 10
ref7
ref9
ref4
ref3
ref6
ba (ref26) 2016
ref5
References_xml – volume: 7
  start-page: 1
  year: 2017
  ident: ref14
  article-title: Deep-learning-based ghost imaging
  publication-title: Sci Rep
– ident: ref23
  doi: 10.1088/1361-6439/abf333
– ident: ref12
  doi: 10.1038/s41598-017-03725-6
– ident: ref16
  doi: 10.1364/OE.412597
– ident: ref24
  doi: 10.1145/3065386
– start-page: 1912
  year: 2015
  ident: ref27
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref20
  doi: 10.1364/OL.44.005186
– ident: ref10
  doi: 10.1109/JPHOT.2017.2741966
– ident: ref3
  doi: 10.1364/AO.58.007741
– ident: ref2
  doi: 10.1109/JSEN.2019.2963050
– ident: ref8
  doi: 10.1103/PhysRevA.78.061802
– ident: ref19
  doi: 10.1126/science.aat8084
– volume: 71
  start-page: 1
  year: 2022
  ident: ref22
  article-title: Localized plasmon-based multicore fiber biosensor for acetylcholine detection
  publication-title: IEEE Trans Instrum Meas
– ident: ref13
  doi: 10.1063/1.3238296
– ident: ref5
  doi: 10.1364/AO.57.006898
– year: 2016
  ident: ref26
  article-title: Layer normalization
  publication-title: arXiv 1607 06450
– ident: ref28
  doi: 10.1002/j.1538-7305.1969.tb01187.x
– ident: ref6
  doi: 10.1016/j.ijleo.2019.05.017
– volume: 10
  start-page: 730
  year: 2016
  ident: ref25
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: PracTEX J
– ident: ref4
  doi: 10.1364/AO.381626
– ident: ref21
  doi: 10.1364/OE.392370
– volume: 8
  start-page: 1
  year: 2018
  ident: ref15
  article-title: Ghost imaging based on deep learning
  publication-title: Sci Rep
– ident: ref29
  doi: 10.1364/OE.26.010048
– ident: ref18
  doi: 10.1038/s41586-020-2973-6
– ident: ref11
  doi: 10.1016/j.cja.2020.11.020
– ident: ref17
  doi: 10.1364/OE.416481
– ident: ref7
  doi: 10.1109/LED.2021.3059781
– ident: ref9
  doi: 10.1364/OE.403195
– ident: ref1
  doi: 10.1109/TIM.2021.3079563
SSID ssj0019757
Score 2.404492
Snippet Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 23088
SubjectTerms Artificial neural networks
Classification
Feature extraction
Image classification
Robustness (mathematics)
Target detection
Training
Title Image-Free Target Classification With Semiactive Laser Detection System
URI https://www.proquest.com/docview/2742704468
Volume 22
WOSCitedRecordID wos000893571900081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWgkQ5ICggCgXlwIlVimMna_uIUFtA1QppF9FbFDsTlKoN1T6q9s4PZ_zIY6lA9MAlylrekZP5Mg97HoS8KSeiFAiEOElNaR0UHRcVlbFJBQdVoQPhE4WPxXQqT07Ul9HoZ5sLc3kmmkZeXamL_8pqHENm29TZW7C7I4oDeI9MxyuyHa__xPhP5ygi4sMFwHjuwrx940sbEuSZ_c1uvc7gvC6crBsfoyJboOBZgW8b7ouYD61W6xGOl-jw2s48w0W4nfiw4VxfrwfxPT7puj5tNaPr_eVOQnCsnzdbh-D95vtpDcMtCMYG4Ryt1KRxyl3Pe1QqYSxD91T4MpqtqGVsACnGh4KTU9_eL2hh_O2bH98U8a5C6ufZwXTfrmWfuxZbSa_P2jP839RcF3zo3B6qcksityTyQOIOuctEppTPAuzOopRw9WK7hwxn40ji3Y1VbFo3m8rdWSzzR-RhcDWi9x4ij8kImh3yYFCAcofcP4JQsvwJOeqBE3ngRJvAiSxwoh44kQNO1AEn8sB5Sr4eHsw_fIxDm43YMMpXsaYTzSuWaiPQHM1KKSQkiUiAlQVQngmTotGouCzSythaEoVIdKGA0irTmhn-jGw1Pxp4TiLN9YSVGSiALGVaaHQumJSgEpyKrsQuoe3ryU2oQW9boZzlf2TKLnnb_eXCF2D52-S99p3n4WtY5jYYQdi4BfniNrReku0e63tka7VYwytyz1yu6uXitYPILwTGgX8
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Free+Target+Classification+With+Semiactive+Laser+Detection+System&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Siyuan&rft.au=Li%2C+Lijing&rft.au=Yu%2C+Zijian&rft.au=Sun%2C+Mingjie&rft.date=2022-12-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=23&rft.spage=23088&rft.epage=23094&rft_id=info:doi/10.1109%2FJSEN.2022.3217281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3217281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon