Image-Free Target Classification With Semiactive Laser Detection System
Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolution...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 22; číslo 23; s. 23088 - 23094 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.12.2022
|
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolutional neural network (CNN) architecture. The convolutional layer is implemented optically by illuminating the target with training-obtained modulated patterns, and the detected intensity signals are regarded as compressed target features. The convolutional layers and classification net are trained together on an electronic platform. Layer normalization (LN) is adopted to improve network generalization ability and accelerate the training process. Network hyperparameters such as the channel numbers and kernel sizes of convolutional layers are analyzed and selected. The feasibility and robustness of the network are verified by both numerical simulation and experiments, whose classification accuracies are 88% and 66%, respectively. The proposed SAL detection and classification system is calculation-efficient and convenient to be adopted in existing guidance platforms or other real-time applications with limited computing resources. |
|---|---|
| AbstractList | Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector (QD)-based seeker and a spatially modulated designator are used in cooperation to achieve image-free target classification via a hybrid convolutional neural network (CNN) architecture. The convolutional layer is implemented optically by illuminating the target with training-obtained modulated patterns, and the detected intensity signals are regarded as compressed target features. The convolutional layers and classification net are trained together on an electronic platform. Layer normalization (LN) is adopted to improve network generalization ability and accelerate the training process. Network hyperparameters such as the channel numbers and kernel sizes of convolutional layers are analyzed and selected. The feasibility and robustness of the network are verified by both numerical simulation and experiments, whose classification accuracies are 88% and 66%, respectively. The proposed SAL detection and classification system is calculation-efficient and convenient to be adopted in existing guidance platforms or other real-time applications with limited computing resources. |
| Author | Sun, Mingjie Yu, Zijian Li, Lijing Wang, Siyuan |
| Author_xml | – sequence: 1 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Lijing orcidid: 0000-0002-2676-4848 surname: Li fullname: Li, Lijing organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Zijian surname: Yu fullname: Yu, Zijian organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Mingjie orcidid: 0000-0003-0649-522X surname: Sun fullname: Sun, Mingjie organization: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China |
| BookMark | eNp9kE9PAjEQxRuDiYB-AG-beF7sX9o9GgTEED2A0VvTLbNYwu5iW0j49u4CJw-eZpJ5b-bNr4c6VV0BQvcEDwjB2ePrYvw2oJjSAaNEUkWuUJcIoVIiueq0PcMpZ_LrBvVC2GBMMilkF01npVlDOvEAydL4NcRktDUhuMJZE11dJZ8uficLKJ2x0R0gmZsAPnmGCPY0XxxDhPIWXRdmG-DuUvvoYzJejl7S-ft0Nnqap5ZiFtMcD3NWUJ5bORRKrJRUQIgkQFcGMBPS8qyJxpThhRV2pYwkuckA40LkObWsjx7Oe3e-_tlDiHpT733VnNRUciox50PVqORZZX0dgodCWxdP70Rv3FYTrFtquqWmW2r6Qq1xkj_OnXel8cd_PL9P6nC- |
| CitedBy_id | crossref_primary_10_23919_JSEE_2024_000104 crossref_primary_10_1016_j_physleta_2024_129550 crossref_primary_10_1016_j_optlaseng_2024_108629 crossref_primary_10_1109_JSEN_2024_3394171 crossref_primary_10_3788_COL202523_091101 crossref_primary_10_1016_j_ast_2025_110263 crossref_primary_10_1016_j_heliyon_2024_e35806 crossref_primary_10_1364_AO_537914 crossref_primary_10_1109_TIM_2025_3574902 |
| Cites_doi | 10.1088/1361-6439/abf333 10.1038/s41598-017-03725-6 10.1364/OE.412597 10.1145/3065386 10.1364/OL.44.005186 10.1109/JPHOT.2017.2741966 10.1364/AO.58.007741 10.1109/JSEN.2019.2963050 10.1103/PhysRevA.78.061802 10.1126/science.aat8084 10.1063/1.3238296 10.1364/AO.57.006898 10.1002/j.1538-7305.1969.tb01187.x 10.1016/j.ijleo.2019.05.017 10.1364/AO.381626 10.1364/OE.392370 10.1364/OE.26.010048 10.1038/s41586-020-2973-6 10.1016/j.cja.2020.11.020 10.1364/OE.416481 10.1109/LED.2021.3059781 10.1364/OE.403195 10.1109/TIM.2021.3079563 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3217281 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 23094 |
| ExternalDocumentID | 10_1109_JSEN_2022_3217281 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH AAYXX ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 7SP 7U5 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c203t-b06b3f24bc76585d878e1171e2dae0357c4901938a4fc5cd8a71ba9e00f5bb2c3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893571900081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:15:01 EDT 2025 Sat Nov 29 06:39:23 EST 2025 Tue Nov 18 21:47:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c203t-b06b3f24bc76585d878e1171e2dae0357c4901938a4fc5cd8a71ba9e00f5bb2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0649-522X 0000-0002-2676-4848 |
| PQID | 2742704468 |
| PQPubID | 75733 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2742704468 crossref_citationtrail_10_1109_JSEN_2022_3217281 crossref_primary_10_1109_JSEN_2022_3217281 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationYear | 2022 |
| Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 (ref14) 2017; 7 (ref15) 2018; 8 ref24 ref23 ref20 ref21 (ref22) 2022; 71 ref28 ref29 (ref27) 2015 ref8 ioffe (ref25) 2016; 10 ref7 ref9 ref4 ref3 ref6 ba (ref26) 2016 ref5 |
| References_xml | – volume: 7 start-page: 1 year: 2017 ident: ref14 article-title: Deep-learning-based ghost imaging publication-title: Sci Rep – ident: ref23 doi: 10.1088/1361-6439/abf333 – ident: ref12 doi: 10.1038/s41598-017-03725-6 – ident: ref16 doi: 10.1364/OE.412597 – ident: ref24 doi: 10.1145/3065386 – start-page: 1912 year: 2015 ident: ref27 article-title: 3D ShapeNets: A deep representation for volumetric shapes publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – ident: ref20 doi: 10.1364/OL.44.005186 – ident: ref10 doi: 10.1109/JPHOT.2017.2741966 – ident: ref3 doi: 10.1364/AO.58.007741 – ident: ref2 doi: 10.1109/JSEN.2019.2963050 – ident: ref8 doi: 10.1103/PhysRevA.78.061802 – ident: ref19 doi: 10.1126/science.aat8084 – volume: 71 start-page: 1 year: 2022 ident: ref22 article-title: Localized plasmon-based multicore fiber biosensor for acetylcholine detection publication-title: IEEE Trans Instrum Meas – ident: ref13 doi: 10.1063/1.3238296 – ident: ref5 doi: 10.1364/AO.57.006898 – year: 2016 ident: ref26 article-title: Layer normalization publication-title: arXiv 1607 06450 – ident: ref28 doi: 10.1002/j.1538-7305.1969.tb01187.x – ident: ref6 doi: 10.1016/j.ijleo.2019.05.017 – volume: 10 start-page: 730 year: 2016 ident: ref25 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: PracTEX J – ident: ref4 doi: 10.1364/AO.381626 – ident: ref21 doi: 10.1364/OE.392370 – volume: 8 start-page: 1 year: 2018 ident: ref15 article-title: Ghost imaging based on deep learning publication-title: Sci Rep – ident: ref29 doi: 10.1364/OE.26.010048 – ident: ref18 doi: 10.1038/s41586-020-2973-6 – ident: ref11 doi: 10.1016/j.cja.2020.11.020 – ident: ref17 doi: 10.1364/OE.416481 – ident: ref7 doi: 10.1109/LED.2021.3059781 – ident: ref9 doi: 10.1364/OE.403195 – ident: ref1 doi: 10.1109/TIM.2021.3079563 |
| SSID | ssj0019757 |
| Score | 2.404492 |
| Snippet | Semiactive laser (SAL) guidance is a point-source detection technology without target feature extraction ability. In this article, the quadrant detector... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 23088 |
| SubjectTerms | Artificial neural networks Classification Feature extraction Image classification Robustness (mathematics) Target detection Training |
| Title | Image-Free Target Classification With Semiactive Laser Detection System |
| URI | https://www.proquest.com/docview/2742704468 |
| Volume | 22 |
| WOSCitedRecordID | wos000893571900081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWgkQ5ICggCgXlwIlVimMna_uIUFtA1QppF9FbFDsTlKoN1T6q9s4PZ_zIY6lA9MAlylrekZP5Mg97HoS8KSeiFAiEOElNaR0UHRcVlbFJBQdVoQPhE4WPxXQqT07Ul9HoZ5sLc3kmmkZeXamL_8pqHENm29TZW7C7I4oDeI9MxyuyHa__xPhP5ygi4sMFwHjuwrx940sbEuSZ_c1uvc7gvC6crBsfoyJboOBZgW8b7ouYD61W6xGOl-jw2s48w0W4nfiw4VxfrwfxPT7puj5tNaPr_eVOQnCsnzdbh-D95vtpDcMtCMYG4Ryt1KRxyl3Pe1QqYSxD91T4MpqtqGVsACnGh4KTU9_eL2hh_O2bH98U8a5C6ufZwXTfrmWfuxZbSa_P2jP839RcF3zo3B6qcksityTyQOIOuctEppTPAuzOopRw9WK7hwxn40ji3Y1VbFo3m8rdWSzzR-RhcDWi9x4ij8kImh3yYFCAcofcP4JQsvwJOeqBE3ngRJvAiSxwoh44kQNO1AEn8sB5Sr4eHsw_fIxDm43YMMpXsaYTzSuWaiPQHM1KKSQkiUiAlQVQngmTotGouCzSythaEoVIdKGA0irTmhn-jGw1Pxp4TiLN9YSVGSiALGVaaHQumJSgEpyKrsQuoe3ryU2oQW9boZzlf2TKLnnb_eXCF2D52-S99p3n4WtY5jYYQdi4BfniNrReku0e63tka7VYwytyz1yu6uXitYPILwTGgX8 |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Free+Target+Classification+With+Semiactive+Laser+Detection+System&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Siyuan&rft.au=Li%2C+Lijing&rft.au=Yu%2C+Zijian&rft.au=Sun%2C+Mingjie&rft.date=2022-12-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=23&rft.spage=23088&rft.epage=23094&rft_id=info:doi/10.1109%2FJSEN.2022.3217281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3217281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |